Catalytic hydrolysis of sodium borohydride can potentially be considered as a convenient and safe method to generate hydrogen, an environmentally clean and sustainable fuel for the future. The present effort establishes the development of FeCuCo tri-metallic oxide catalyst by a simple, single-step solution combustion synthesis (SCS) method for hydrogen generation from NaBH4 hydrolysis. Amongst series of FeCuCo tri-metallic oxide catalyst synthesized, FeCuCo with 50:37.5:12.5 wt% respective precursor loading displayed remarkable activity by generating hydrogen at the rate of 1380 mL min-1 g-1 (1242 mL in 18 min) with turnover frequency (TOF) of 62.02 mol g-1 min-1. The catalyst was characterized by using various techniques to understand their physiochemical and morphological properties. The results revealed that the catalyst synthesized by combustion method led to the formation of FeCuCo with appreciable surface area, porous foam-like morphology and high surface acidity. Major factors affecting the hydrolysis of NaBH4 such as catalyst loading, NaOH concentration and temperature variation were studied in detail. Additionally, the FeCuCo catalyst also displayed substantial recyclability performance up to eight cycles without considerable loss in its catalytic activity. Therefore, FeCuCo oxide can be demonstrated as one of the most efficient, cost effective tri-metallic catalyst so far for application in the hydrogen generation.
Solvent-based recycling of plastic can offer the main improvement when it is employed for pyrolysis-catalytic steam reforming. In this research, plastic waste dissolved in phenol was used as a feed for catalytic cracking and steam reforming reactions for valuable liquid fuels and hydrogen production, which is gaining the attention of researchers globally. Microplastic wastes (MPWs) are tiny plastic particles that arise due to product creation and breakdown of larger plastics. They can be found mainly in several habitats, including seas and freshwater ecosystems. MPWs harm aquatic species, turtles, and birds and were chosen to recover in this study that can be reacted on the catalyst surface. Biphasic anatase-rutile TiO2 with spherical-shaped support for Ni and Pd metals with nanosized particles was synthesized via the hydrothermal treatment method, and its chemical and physical properties were characterized accordingly. According to temperature-programmed desorption of carbon dioxide (CO2-TPD) and temperature-programmed reduction of hydrogen (H2-TPR) results, the incorporation of Pd into Ni/TNPs enhanced the basicity of the support surface and the redox properties of catalysts, which were strongly linked to the improved hydrogen yield (71%) and phenol conversion (79%) at 600 °C. The Ni-Pd/TNPs nanocatalyst, with remarkable stability for 72 h of time on stream, is a promising catalyst for the MPW-phenol cracking and steam reforming reactions toward H2 production for clean energy generation and other environmental applications. Besides, this study has also highlighted the opportunities of overcoming the risk of microplastic waste and converting it into valuable fuels such as decamethyltetrasiloxane, phenanthrene, methyl palmitate, benzenepropanoic acid, benzoic acid, azulene, xanthene, anisole, biphenyl, phthalic acid, diisooctyl phthalate, etc.
The fatty acid methyl ester (FAME) production from dairy effluent scum as a sustainable energy source using CaO obtained from organic ash over titanium dioxide nanoparticles (TNPs) as the transesterification nano-catalyst has been studied. The physical and chemical properties of the synthesized catalysts were characterized, and the effect of different experimental factors on the biodiesel yield was studied. It was revealed that the CaO-TiO2 nano-catalyst displayed bifunctional properties, has both basic and acid phases, and leads to various effects on the catalyst activity in the transesterification process. These bifunctional properties are critical for achieving simultaneous transesterification of dairy scum oil feedstock. According to the reaction results, the catalyst without and with a low ratio of TNPs showed a low catalytic activity. In contrast, the 3Ca-3Ti nano-catalyst had the highest catalytic activity and a strong potential for reusability, producing a maximum biodiesel yield of 97.2% for a 3 wt% catalyst, 1:20 oil to methanol molar ratio for the dairy scum, and a reaction temperature of 70 °C for a period of 120 min under a 300 kPa pressure. The physical properties of the produced biodiesel are within the EN14214 standards.