Examination of the brain's condition with the Electroencephalogram (EEG) can be helpful to predict abnormality and cerebral activities. The purpose of this study was to develop an Automated Diagnostic Tool (ADT) to investigate and classify the EEG signal patterns into normal and schizophrenia classes. The ADT implements a sequence of events, such as EEG series splitting, non-linear features mining, t-test assisted feature selection, classification and validation. The proposed ADT is employed to evaluate a 19-channel EEG signal collected from normal and schizophrenia class volunteers. A dataset was created by splitting the raw 19-channel EEG into a sequence of 6250 sample points, which was helpful to produce 1142 features of normal and schizophrenia class patterns. Non-linear feature extraction was then implemented to mine 157 features from each EEG pattern, from which 14 of the principal features were identified based on significance. Finally, a signal classification practice with Decision-Tree (DT), Linear-Discriminant analysis (LD), k-Nearest-Neighbour (KNN), Probabilistic-Neural-Network (PNN), and Support-Vector-Machine (SVM) with various kernels was implemented. The experimental outcome showed that the SVM with Radial-Basis-Function (SVM-RBF) offered a superior average performance value of 92.91% on the considered EEG dataset, as compared to other classifiers implemented in this work.
The heart muscle pumps blood to vital organs, which is indispensable for human life. Congestive heart failure (CHF) is characterized by the inability of the heart to pump blood adequately throughout the body without an increase in intracardiac pressure. The symptoms include lung and peripheral congestion, leading to breathing difficulty and swollen limbs, dizziness from reduced delivery of blood to the brain, as well as arrhythmia. Coronary artery disease, myocardial infarction, and medical co-morbidities such as kidney disease, diabetes, and high blood pressure all take a toll on the heart and can impair myocardial function. CHF prevalence is growing worldwide. It afflicts millions of people globally, and is a leading cause of death. Hence, proper diagnosis, monitoring and management are imperative. The importance of an objective CHF diagnostic tool cannot be overemphasized. Standard diagnostic tests for CHF include chest X-ray, magnetic resonance imaging (MRI), nuclear imaging, echocardiography, and invasive angiography. However, these methods are costly, time-consuming, and they can be operator-dependent. Electrocardiography (ECG) is inexpensive and widely accessible, but ECG changes are typically not specific for CHF diagnosis. A properly designed computer-aided detection (CAD) system for CHF, based on the ECG, would potentially reduce subjectivity and provide quantitative assessment for informed decision-making. Herein, we review existing CAD for automatic CHF diagnosis, and highlight the development of an ECG-based CAD diagnostic system that employs deep learning algorithms to automatically detect CHF.
In 2020 the world is facing unprecedented challenges due to COVID-19. To address these challenges, many digital tools are being explored and developed to contain the spread of the disease. With the lack of availability of vaccines, there is an urgent need to avert resurgence of infections by putting some measures, such as contact tracing, in place. While digital tools, such as phone applications are advantageous, they also pose challenges and have limitations (eg, wireless coverage could be an issue in some cases). On the other hand, wearable devices, when coupled with the Internet of Things (IoT), are expected to influence lifestyle and healthcare directly, and they may be useful for health monitoring during the global pandemic and beyond. In this work, we conduct a literature review of contact tracing methods and applications. Based on the literature review, we found limitations in gathering health data, such as insufficient network coverage. To address these shortcomings, we propose a novel intelligent tool that will be useful for contact tracing and prediction of COVID-19 clusters. The solution comprises a phone application combined with a wearable device, infused with unique intelligent IoT features (complex data analysis and intelligent data visualization) embedded within the system to aid in COVID-19 analysis. Contact tracing applications must establish data collection and data interpretation. Intelligent data interpretation can assist epidemiological scientists in anticipating clusters, and can enable them to take necessary action in improving public health management. Our proposed tool could also be used to curb disease incidence in future global health crises.