Displaying all 3 publications

Abstract:
Sort:
  1. Parveez B, Jamal NA, Nazurah NI, Aabid A, Baig M
    ACS Omega, 2024 Aug 27;9(34):36690-36698.
    PMID: 39220517 DOI: 10.1021/acsomega.4c05354
    Porous aluminum (Al) is popular due to its lightweight properties and impact energy absorption. However, it often has a lower mechanical strength than solid Al. To improve the performance, diamond reinforcement was introduced into the matrix. Further, addressing the challenge of interfacial bonding between Al and diamond, coated diamond with varying contents of 5, 10, 15, and 20 wt % was added to the porous Al alloy matrix via the powder metallurgy technique. The porosities were formed by using poly(methyl methacrylate) (30 wt %) as a space holder. The densities of the resultant porous composites ranged from 2.20 to 2.37 g/cm3 and porosities ranged from 33 to 38% for 5-20 wt % diamond contents. Furthermore, the yield strength and plateau stress increased from 21.47 to 29.46 MPa and 14 to 20 MPa, respectively, up to 10 wt % diamond content but declined upon further addition. Similarly, the energy absorption capacity increased from 2.15 to 2.95 MJ/m3 up to 10 wt % diamond content and thereafter decreased. Thus, the addition of coated diamond and alloying elements in Al strengthened the porous Al composites, making it suitable for applications requiring good compressive strength and energy absorption capacity.
  2. Jamal NA, Tan AW, Yusof F, Katsuyoshi K, Hisashi I, Singh S, et al.
    Materials (Basel), 2016 Mar 30;9(4).
    PMID: 28773377 DOI: 10.3390/ma9040254
    In recent years, closed-cell porous Aluminum (Al) has drawn increasing attention, particularly in the applications requiring reduced weight and energy absorption capability such as in the automotive and aerospace industries. In the present work, porous Al with closed-cell structure was successfully fabricated by powder metallurgy technique using PMMA as a space holder. The effects of the amount of PMMA powder on the porosity, density, microstructure and compressive behaviors of the porous specimens were systematically evaluated. The results showed that closed-cell porous Al having different porosities (12%-32%) and densities (1.6478 g/cm³, 1.5125 g/cm³ and 1.305 g/cm³) could be produced by varying the amount of PMMA (20-30 wt %). Meanwhile, the compressive behavior results demonstrated that the plateau stress decreased and the energy absorption capacity increased with increasing amount of PMMA. However, the maximum energy absorption capacity was achieved in the closed-cell porous Al with the addition of 25 wt % PMMA. Therefore, fabrication of closed-cell porous Al using 25 wt % PMMA is considered as the optimal condition in the present study since the resultant closed-cell porous Al possessed good combinations of porosity, density and plateau stress, as well as energy absorption capacity.
  3. Parveez B, Jamal NA, Maleque MA, Rozhan AN, Aabid A, Baig M
    Materials (Basel), 2023 Jan 18;16(3).
    PMID: 36769931 DOI: 10.3390/ma16030921
    The compressive properties of powder metallurgy (PM)-based porous aluminum (Al) composites were optimized at three levels based on the following parameters: titanium (Ti)-coated diamond content, polymethylmethacrylate (PMMA) particle content, and PMMA particle size. A 3 × 3 matrix was used in the experimental design of an L9 orthogonal array to get nine sets of combinations. These nine compositions were then tested and analyzed for density, porosity, plateau stress, and energy absorption capacity. The effect of individual input parameters was assessed using the Taguchi-based means ratio and analysis of variance (ANOVA). The main effect plots articulated the optimal parameter levels for achieving maximum compressive property values (plateau stress and energy absorption capacity). The findings show that diamond content and PMMA particle size have a major impact on compressive properties. The ANOVA analysis yielded similar results, with diamond content accounting for the greatest value. Further, the response optimization of compressive properties revealed that maximum values could be obtained at optimum parameters: diamond content of 12 wt.%, PMMA particle size of 150 μm, and PMMA particle content of 25 wt.%. Confirmation tests on the optimal parameters revealed improved results as well as some minor errors and deviations, indicating that the chosen parameters are critical for controlling the compressive properties of Al composites.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links