Displaying all 2 publications

Abstract:
Sort:
  1. Dahiya R, Dahiya S, Fuloria NK, Jankie S, Agarwal A, Davis V, et al.
    Curr Med Chem, 2021;28(38):7887-7909.
    PMID: 34042024 DOI: 10.2174/0929867328666210526095436
    BACKGROUND: Peptides and peptide-based therapeutics are biomolecules that demarcate a significant chemical space to bridge small molecules with biological therapeutics, such as antibodies, recombinant proteins, and protein domains.

    INTRODUCTION: Cyclooligopeptides and depsipeptides, particularly cyanobacteria-derived thiazoline-based polypeptides (CTBCs), exhibit a wide array of pharmacological activities due to their unique structural features and interesting bioactions, which furnish them as promising leads for drug discovery.

    METHODS: In the present study, we comprehensively review the natural sources, distinguishing chemistries, and pertinent bioprofiles of CTBCs. We analyze their structural peculiarities counting the mode of actions for biological portrayals which render CTBCs as indispensable sources for emergence of prospective peptide-based therapeutics. In this milieu, metal organic frameworks and their biomedical applications are also briefly discussed. To boot, the challenges, approaches, and clinical status of peptide-based therapeutics are conferred.

    RESULTS: Based on these analyses, CTBCs can be appraised as ideal drug targets that have always remained a challenge for traditional small molecules, like those involved in protein- protein interactions or to be developed as potential cancer-targeting nanomaterials. Cyclization-induced reduced conformational freedom of these cyclooligopeptides contribute to improved metabolic stability and binding affinity to their molecular targets. Clinical success of several cyclic peptides provokes the large library-screening and synthesis of natural product-like cyclic peptides to address the unmet medical needs.

    CONCLUSION: CTBCs can be considered as the most promising lead compounds for drug discovery. Adopting the amalgamation of advanced biological and biopharmaceutical strategies might endure these cyclopeptides to be prospective biomolecules for futuristic therapeutic applications in the coming times.

  2. Dahiya R, Dahiya S, Fuloria NK, Kumar S, Mourya R, Chennupati SV, et al.
    Mar Drugs, 2020 Jun 24;18(6).
    PMID: 32599909 DOI: 10.3390/md18060329
    Peptides are distinctive biomacromolecules that demonstrate potential cytotoxicity and diversified bioactivities against a variety of microorganisms including bacteria, mycobacteria, and fungi via their unique mechanisms of action. Among broad-ranging pharmacologically active peptides, natural marine-originated thiazole-based oligopeptides possess peculiar structural features along with a wide spectrum of exceptional and potent bioproperties. Because of their complex nature and size divergence, thiazole-based peptides (TBPs) bestow a pivotal chemical platform in drug discovery processes to generate competent scaffolds for regulating allosteric binding sites and peptide-peptide interactions. The present study dissertates on the natural reservoirs and exclusive structural components of marine-originated TBPs, with a special focus on their most pertinent pharmacological profiles, which may impart vital resources for the development of novel peptide-based therapeutic agents.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links