Displaying all 3 publications

Abstract:
Sort:
  1. Mahaq O, P Rameli MA, Jaoi Edward M, Mohd Hanafi N, Abdul Aziz S, Abu Hassim H, et al.
    Brain Behav, 2020 11;10(11):e01817.
    PMID: 32886435 DOI: 10.1002/brb3.1817
    INTRODUCTION: Edible bird nest (EBN) is a natural food product produced from edible nest swiftlet's saliva which consists of glycoproteins as one of its main components; these glycoproteins contain an abundant of sialic acid. The dietary EBN supplementation has been reported to enhance brain functions in mammals and that the bioactivities and nutritional value of EBN are important during periods of rapid brain growth particularly for preterm infant. However, the effects of EBN in maternal on multigeneration learning and memory function still remain unclear. Thus, the present study aimed to determine the effects of maternal EBN supplementation on learning and memory function of their first (F1)- and second (F2)-generation mice.

    METHODS: CJ57BL/6 breeder F0 mice were fed with EBN (10 mg/kg) from different sources. After 6 weeks of diet supplementations, the F0 animals were bred to produce F1 and F2 animals. At 6 weeks of age, the F1 and F2 animals were tested for spatial recognition memory using a Y-maze test. The sialic acid content from EBN and brain gene expression were analyzed using HPLC and PCR, respectively.

    RESULTS: All EBN samples contained glycoprotein with high level of sialic acid. Dietary EBN supplementation also showed an upregulation of GNE, ST8SiaIV, SLC17A5, and BDNF mRNA associated with an improvement in Y-maze cognitive performance in both generations of animal. Qualitatively, the densities of synaptic vesicles in the presynaptic terminal were higher in the F1 and F2 animals which might derive from maternal EBN supplementation.

    CONCLUSION: This study provided a solid foundation toward the growing research on nutritional intervention from dietary EBN supplementation on cognitive and neurological development in the generation of mammals.

  2. Zaidi NE, Shazali NAH, Chor ALT, Osman MA, Ibrahim K, Jaoi-Edward M, et al.
    J Vis Exp, 2019 12 14.
    PMID: 31885381 DOI: 10.3791/60281
    Tumor-associated macrophages (TAMs) have been identified as an important component for tumor growth, invasion, metastasis, and resistance to cancer therapies. However, tumor-associated macrophages can be harmful to the tumor depending on the tumor microenvironment and can reversibly alter their phenotypic characteristics by either antagonizing the cytotoxic activity of immune cells or enhancing anti-tumor response. The molecular actions of macrophages and their interactions with tumor cells (e.g., phagocytosis) have not been extensively studied. Therefore, the interaction between immune cells (M1/M2-subtype TAM) and cancer cells in the tumor microenvironment is now a focus of cancer immunotherapy research. In the present study, a live cell coculture model of induced M1 macrophages and mouse mammary 4T1 carcinoma cells was developed to assess the phagocytic activity of macrophages using a time-lapse video feature using phase-contrast, fluorescent, and differential interference contrast (DIC) microscopy. The present method can observe and document multipoint live-cell imaging of phagocytosis. Phagocytosis of 4T1 cells by M1 macrophages can be observed using fluorescent microscopy before staining 4T1 cells with carboxyfluorescein succinimidyl ester (CFSE). The current publication describes how to coculture macrophages and tumor cells in a single imaging dish, polarize M1 macrophages, and record multipoint events of macrophages engulfing 4T1 cells during 13 h of coculture.
  3. Shaari N'AL, Jaoi-Edward M, Loo SS, Salisi MS, Yusoff R, Ab Ghani NI, et al.
    BMC Genet, 2019 03 25;20(1):37.
    PMID: 30909863 DOI: 10.1186/s12863-019-0741-0
    BACKGROUND: In Malaysia, the domestic water buffaloes (Bubalus bubalis) are classified into the swamp and the murrah buffaloes. Identification of these buffaloes is usually made via their phenotypic appearances. This study characterizes the subspecies of water buffaloes using karyotype, molecular and phylogenetic analyses. Blood of 105 buffaloes, phenotypically identified as swamp, murrah and crossbred buffaloes were cultured, terminated and harvested using conventional karyotype protocol to determine the number of chromosomes. Then, the D-loop of mitochondrial DNA of 10 swamp, 6 crossbred and 4 murrah buffaloes which were identified earlier by karyotyping were used to construct a phylogenetic tree was constructed.

    RESULTS: Karyotypic analysis confirmed that all 93 animals phenotypically identified as swamp buffaloes with 48 chromosomes, all 7 as crossbreds with 49 chromosomes, and all 5 as murrah buffaloes with 50 chromosomes. The D-loop of mitochondrial DNA analysis showed that 10 haplotypes were observed with haplotype diversity of 0.8000 ± 0.089. Sequence characterization revealed 72 variables sites in which 67 were parsimony informative sites with sequence diversity of 0.01906. The swamp and murrah buffaloes clearly formed 2 different clades in the phylogenetic tree, indicating clear maternal divergence from each other. The crossbreds were grouped within the swamp buffalo clade, indicating the dominant maternal swamp buffalo gene in the crossbreds.

    CONCLUSION: Thus, the karyotyping could be used to differentiate the water buffaloes while genotypic analysis could be used to characterize the water buffaloes and their crossbreds.

Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links