METHODS AND ANALYSIS: We will systematically conduct a comprehensive literature search using various databases including PubMed, EMBASE, Scopus, CENTRAL and Google Scholar to identify potential studies. The search will be performed for any eligible articles from the earliest published articles up to latest available studies in 2020. We will include all the observational studies such as cohort case-control and cross-sectional studies that explains or measures the effects of temperature and/or humidity and/or air quality and/or anthropic activities that is associated with SARS-CoV-2. Study selection and reporting will follow the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines and Meta-Analysis of Observational Studies in Epidemiology guideline. All data will be extracted using a standardised data extraction form and quality of the studies will be assessed using the Newcastle-Ottawa Scale guideline. Descriptive and meta-analysis will be performed using a random effect model in Review Manager File.
ETHICS AND DISSEMINATION: No primary data will be collected, and thus no formal ethical approval is required. The results will be disseminated through a peer-reviewed publication and conference presentation.
PROSPERO REGISTRATION NUMBER: CRD42020176756.
METHODS: A cross sectional study on nationally representative sample deaths that occurred in Malaysia during 2013 was used. A VA questionnaire suitable for local use was developed. Trained field interviewers visited the family members of the deceased at their homes and conducted face to face interviews with the next of kin. Completed questionnaires were reviewed by trained physicians who assigned multiple and underlying causes. Reference diagnoses for validation were obtained from review of medical records (MR) available for a sample of the overall study deaths.
RESULTS: Corresponding MR diagnosis with matched sample of the VA diagnosis were available in 2172 cases for the validation study. Sensitivity scores were good (>75%) for transport accidents and certain cancers. Moderate sensitivity (50% - 75%) was obtained for ischaemic heart disease (64%) and cerebrovascular disease (72%). The validation sample for deaths due to major causes such as ischaemic heart disease, pneumonia, breast cancer and transport accidents show low cause-specific mortality fraction (CSMF) changes. The scores obtained for the top 10 leading site-specific cancers ranged from average to good.
CONCLUSION: We can conclude that VA is suitable for implementation for deaths outside the health facilities in Malaysia. This would reduce ill-defined mortality causes in vital registration data, and yield more accurate national mortality statistics.