Displaying 1 publication

Abstract:
Sort:
  1. Sai Manogna K, Deva Prasad Raju B, Rajasekhara Reddy G, Kallem P, Shaik MI, John Sushma N
    Heliyon, 2024 Feb 15;10(3):e25064.
    PMID: 38352738 DOI: 10.1016/j.heliyon.2024.e25064
    Breast cancer remains a significant global health concern, necessitating the development of novel therapeutic approaches. In this study, we investigate the role of Eu3+ doped hydroxyapatite nanocomposites (Han: Eu3+) in the treatment of MCF7 and 4T1 breast cancer cell lines. Furthermore, we explored the structural and luminescent properties of these nanocomposites. Han: Eu3+ were synthesized using a modified co-precipitation method, and their morphology and crystal structure were characterized using scanning electron microscopy (SEM) and X-ray diffraction (XRD) in which the average crystalline size of Han: Eu3+ was found to be 25 nm, rendering them suitable for cellular uptake and targeted therapy. To gain insights into the luminescent properties of Han: Eu3+, their excitation and emission spectra were recorded using photoluminescence spectrometer. The characteristic red emission of Eu3+ ions was observed upon excitation, validating the successful doping of Eu3+ into the Han lattice, which was confirmed by the CIE chromaticity coordinate study. These luminescent properties of Han: Eu3+ hold promise for potential applications in bioimaging. To evaluate the efficacy of Han: Eu3+ in breast cancer treatment, MCF7 and 4T1 cell lines were exposed to varying concentrations of the nanocomposites. Cell viability assays revealed a concentration-dependent reduction in cell viability, indicating the potential anticancer activity of Han: Eu3+. The findings of this study contribute to the expanding field of nanomedicine, bringing targeted breast cancer treatments and us closer to more effective.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links