The fabrication of bi-material micro-components via two-component micro-powder injection moulding (2C-µPIM) from 3 mol% yttria-stabilised zirconia (3YSZ) and micro/nano bimodal stainless steel 316L (SS 316L) powders has received insufficient attention. Apart from this, retaining the bonding between ceramic and metal at different processing stages of 2C-µPIM is challenging. This study investigated the solvent and thermal debinding mechanisms of green bi-material micro-parts of 3YSZ and bimodal SS 316L without collapsing the ceramic/metal joining. In this research, feedstocks were prepared by integrating the powders individually with palm stearin and low-density polyethylene binders. The results demonstrated that during the solvent debinding process, the palm stearin removal rate in the bi-materials composed of 3YSZ and bimodally configured SS 316L feedstocks intensified with an increase in temperature. The establishment of interconnected pores in the solvent-debound components facilitated the thermal debinding process, which removed 99% of the binder system. Following sintering, the debound bi-materials exhibited a relative density of 95.3%. According to a study of the microstructures using field emission scanning electron microscopy, an adequate bond between 3YSZ and bimodal SS 316L was established in the micro-part after sintering. The bi-material sintered at 1350 °C had the highest hardness of 1017.4 HV along the joining region.
Machining-induced surface fractures in ceramic restorations is a long-standing problem in dentistry, affecting the restorations' functionality and reliability. This study approached a novel ultrasonic vibration-assisted machining technique to zirconia-containing lithium silicate glass-ceramics (ZLS) and characterized its induced surface fracture topographies and morphologies to understand the microstructure-property-processing relations. The materials were processed using a digitally controlled ultrasonic milling machine at a harmonic vibration frequency with different amplitudes. Machining-induced surface fracture topographies were measured with a 3D white light optical profilometer using the arithmetic mean, peak and valley, and maximum heights, as well as the kurtosis and skewness height distributions, and the texture aspect ratios. Fracture morphologies were analysed using scanning electron microscopy (SEM). The surface fracture topographies were significantly dependent on the material microstructure, the mechanical properties, and the ultrasonic machining vibration amplitudes. Larger scale fractures with higher arithmetic mean, peak and valley heights, and kurtosis and skewness height distributions were induced in higher brittleness indexed pre-crystallized ZLS than lower indexed crystallized ZLS by conventional machining. Conchoidal fractures occurred in pre-crystallized ZLS while microcracks were found in crystallized state although brittle fractures mixed with localized ductile flow deformations dominated all machined ZLS surfaces. Ultrasonic machining at an ideal vibration amplitude resulted in more ductile removal, reducing fractured-induced peaks and valleys for both materials than conventional processing. This research demonstrates the microstructure-property-processing interdependence for ZLS materials and the novel machining technique to be superior to current processing, reducing fractures in the materials and potentially advancing dental CAD/CAM techniques.
While titanium alloy (Ti-6Al-4V) made by laser powder bed fusion (L-PBF) exhibits complex deformation behaviors, its important micromechanical properties in relation to loading directions are not fully understood. This research aims to investigate the micromechanical behaviors of printed L-PBF Ti-6Al-4V alloys under vertical (i.e., the loading direction perpendicular to printed layers) and horizontal (i.e., the loading direction parallel to printed layers) compressions using in-situ scanning electron microscopy (SEM) micropillar techniques. Ti-6Al-4V alloys were L-PBF-printed using a 45° rotate scanning strategy with vertical and horizontal build directions. The microstructures of the two alloys were analyzed using the SEM with energy-dispersive X-ray spectroscopy (EDS). The titanium alloy micropillars were produced using focused ion beam (FIB) milling in the SEM. In-situ SEM micropillar compressions were conducted using a flat diamond indenter. Vertical alloy had smaller cross-patterned finer α' martensite than horizontal one. While both vertical and horizontal micropillars showed elastic-plastic behaviors, the former had significantly higher yield, fracture, and compression strength values, as well as resilience and toughness, than the latter, leading to the formation of favorable shear bands. Both micropillars exhibited ductile fractures but had distinct failure mechanisms. The ductile fracture in the vertical micropillars was due to strain hardening, large plastic deformation, and shear band formation, while the ductile fracture in the horizontal ones was attributed to compression-induced bending and plastic buckling. The micromechanical characteristics of L-PBF Ti-6Al-4V materials provides an important insight into the small-scale deformation and failure mechanisms of the alloys influenced by loading directions.
Two-component micro-powder injection moulding (2C-μPIM) is a prospective approach for fabricating bi-material micro-components of stainless steel 316L (SS316L) and 3 mol% yttria-stabilised zirconia (3YSZ) at an appealing cost. However, the fundamental challenge lies in preventing the formation of large-scale cracks at the interface of two different materials during sintering. This study investigated how SS316L nanoparticles in bimodally configured SS316L powder that incorporated both nanoparticles and microparticles influenced the sintering of 2C-μPIM-processed miniature bi-materials made of bimodal SS316L and 3YSZ. In this study, feedstocks were developed by integrating monomodal (micro-sized) SS316L powder, three types of nano/micro-bimodal SS316L powders, and 3YSZ powder individually with palm stearin and low-density polyethylene binders. The results indicated that increasing the SS316L nanoparticle content to 45 vol.% caused a 19.5% increase in the critical powder loading in the bimodal SS316L powder as compared to that in the monomodal SS316L powder. The addition of SS316L nanoparticles increased the relative density and hardness of the sintered bi-materials, with the maximum values obtained being 96.8% and 1156.8 HV, respectively. Field emission scanning electron microscopy investigations revealed that adding 15 vol.% and 30 vol.% SS316L nanoparticle contents reduced interface cracks in bi-materials significantly, while 45 vol.% resulted in a crack-free interface.