Displaying all 5 publications

Abstract:
Sort:
  1. Sakaue S, Hirata J, Kanai M, Suzuki K, Akiyama M, Lai Too C, et al.
    Nat Commun, 2020 03 26;11(1):1569.
    PMID: 32218440 DOI: 10.1038/s41467-020-15194-z
    The diversity in our genome is crucial to understanding the demographic history of worldwide populations. However, we have yet to know whether subtle genetic differences within a population can be disentangled, or whether they have an impact on complex traits. Here we apply dimensionality reduction methods (PCA, t-SNE, PCA-t-SNE, UMAP, and PCA-UMAP) to biobank-derived genomic data of a Japanese population (n = 169,719). Dimensionality reduction reveals fine-scale population structure, conspicuously differentiating adjacent insular subpopulations. We further enluciate the demographic landscape of these Japanese subpopulations using population genetics analyses. Finally, we perform phenome-wide polygenic risk score (PRS) analyses on 67 complex traits. Differences in PRS between the deconvoluted subpopulations are not always concordant with those in the observed phenotypes, suggesting that the PRS differences might reflect biases from the uncorrected structure, in a trait-dependent manner. This study suggests that such an uncorrected structure can be a potential pitfall in the clinical application of PRS.
  2. Liu C, Kanazawa T, Tian Y, Mohamed Saini S, Mancuso S, Mostaid MS, et al.
    Transl Psychiatry, 2019 08 27;9(1):205.
    PMID: 31455759 DOI: 10.1038/s41398-019-0532-4
    Over 3000 candidate gene association studies have been performed to elucidate the genetic underpinnings of schizophrenia. However, a comprehensive evaluation of these studies' findings has not been undertaken since the decommissioning of the schizophrenia gene (SzGene) database in 2011. As such, we systematically identified and carried out random-effects meta-analyses for all polymorphisms with four or more independent studies in schizophrenia along with a series of expanded meta-analyses incorporating published and unpublished genome-wide association (GWA) study data. Based on 550 meta-analyses, 11 SNPs in eight linkage disequilibrium (LD) independent loci showed Bonferroni-significant associations with schizophrenia. Expanded meta-analyses identified an additional 10 SNPs, for a total of 21 Bonferroni-significant SNPs in 14 LD-independent loci. Three of these loci (MTHFR, DAOA, ARVCF) had never been implicated by a schizophrenia GWA study. In sum, the present study has provided a comprehensive summary of the current schizophrenia genetics knowledgebase and has made available all the collected data as a resource for the research community.
  3. Cheng YC, Stanne TM, Giese AK, Ho WK, Traylor M, Amouyel P, et al.
    Stroke, 2016 Feb;47(2):307-16.
    PMID: 26732560 DOI: 10.1161/STROKEAHA.115.011328
    BACKGROUND AND PURPOSE: Although a genetic contribution to ischemic stroke is well recognized, only a handful of stroke loci have been identified by large-scale genetic association studies to date. Hypothesizing that genetic effects might be stronger for early- versus late-onset stroke, we conducted a 2-stage meta-analysis of genome-wide association studies, focusing on stroke cases with an age of onset <60 years.

    METHODS: The discovery stage of our genome-wide association studies included 4505 cases and 21 968 controls of European, South-Asian, and African ancestry, drawn from 6 studies. In Stage 2, we selected the lead genetic variants at loci with association P<5×10(-6) and performed in silico association analyses in an independent sample of ≤1003 cases and 7745 controls.

    RESULTS: One stroke susceptibility locus at 10q25 reached genome-wide significance in the combined analysis of all samples from the discovery and follow-up stages (rs11196288; odds ratio =1.41; P=9.5×10(-9)). The associated locus is in an intergenic region between TCF7L2 and HABP2. In a further analysis in an independent sample, we found that 2 single nucleotide polymorphisms in high linkage disequilibrium with rs11196288 were significantly associated with total plasma factor VII-activating protease levels, a product of HABP2.

    CONCLUSIONS: HABP2, which encodes an extracellular serine protease involved in coagulation, fibrinolysis, and inflammatory pathways, may be a genetic susceptibility locus for early-onset stroke.

  4. Ishigaki K, Sakaue S, Terao C, Luo Y, Sonehara K, Yamaguchi K, et al.
    Nat Genet, 2022 Nov;54(11):1640-1651.
    PMID: 36333501 DOI: 10.1038/s41588-022-01213-w
    Rheumatoid arthritis (RA) is a highly heritable complex disease with unknown etiology. Multi-ancestry genetic research of RA promises to improve power to detect genetic signals, fine-mapping resolution and performances of polygenic risk scores (PRS). Here, we present a large-scale genome-wide association study (GWAS) of RA, which includes 276,020 samples from five ancestral groups. We conducted a multi-ancestry meta-analysis and identified 124 loci (P 
  5. Wang A, Shen J, Rodriguez AA, Saunders EJ, Chen F, Janivara R, et al.
    Nat Genet, 2023 Dec;55(12):2065-2074.
    PMID: 37945903 DOI: 10.1038/s41588-023-01534-4
    The transferability and clinical value of genetic risk scores (GRSs) across populations remain limited due to an imbalance in genetic studies across ancestrally diverse populations. Here we conducted a multi-ancestry genome-wide association study of 156,319 prostate cancer cases and 788,443 controls of European, African, Asian and Hispanic men, reflecting a 57% increase in the number of non-European cases over previous prostate cancer genome-wide association studies. We identified 187 novel risk variants for prostate cancer, increasing the total number of risk variants to 451. An externally replicated multi-ancestry GRS was associated with risk that ranged from 1.8 (per standard deviation) in African ancestry men to 2.2 in European ancestry men. The GRS was associated with a greater risk of aggressive versus non-aggressive disease in men of African ancestry (P = 0.03). Our study presents novel prostate cancer susceptibility loci and a GRS with effective risk stratification across ancestry groups.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links