Displaying all 2 publications

Abstract:
Sort:
  1. Kampaengsri S, Chansaenpak K, Yong GY, Hiranmartsuwan P, Uengwanarat B, Lai RY, et al.
    ACS Appl Bio Mater, 2022 Sep 02.
    PMID: 36054220 DOI: 10.1021/acsabm.2c00624
    Photothermal therapy is a promising treatment modality in the realm of cancer therapy. Photothermal nanomaterials that absorb and emit in the near-infrared range (750-900 nm) have drawn a lot of attention recently because of the deep penetration of NIR light in biological tissue. Most nanomaterials, however, are produced by encapsulating or altering the surface of a nanoplatform, which has limited loading capacity and long-term storage. Herein, we developed a stable polymer conjugated with aza-BODIPY that self-assembled to form nanoparticles (aza-BODIPY-mPEG) with better hydrophilicity and biocompatibility while retaining the dye's photothermal conversion characteristics. Aza-BODIPY-mPEG with a hydrodynamic size of around 170 nm exhibited great photostability and excellent photothermal therapy in vitro and in ovo. Aza-BODIPY-mPEG exhibits approximately 30% better anti-angiogenesis and antitumor activity against implanted xenograft human HCT116 tumor in the chick embryo compared to parent aza-BODIPY-A, altogether suggesting that aza-BODIPY-mPEG is a promising material for cancer photothermal therapy.
  2. Kampaengsri S, Yong GY, Aryamueang S, Ouengwanarat B, Pewklang T, Chansaenpak K, et al.
    Sci Rep, 2025 Jan 06;15(1):884.
    PMID: 39762372 DOI: 10.1038/s41598-024-83249-y
    In this work, we synthesize a quinoline-based heptamethine cyanine, QuCy7, with sulfonate groups to enhance water solubility. This dye demonstrates exceptional near-infrared absorption beyond 750 nm, accompanied by photothermal properties but low photostability. Encapsulating QyCy7 with polyethylene glycol to form nanopolymer, QuCy7@mPEG NPs, addresses the issue of its photoinstability. TEM showed that QuCy7@mPEG NPs possess a spherical morphology, featuring a core-shell structure with a size of around 120 nm in diameter. Upon irradiation with an 808 nm laser for 10 min, a significant increase in temperature up to 24 °C can be achieved with a photothermal conversion (PTC) rate of approximately 35%. QuCy7@mPEG NPs exhibit remarkable photothermal stability as compared to QuCy7. The efficiency of QuCy7@mPEG NPs was demonstrated by the in vitro PTT studies. Finally, the nanoparticles' acute toxicity and effectiveness were assessed using the chick embryo model. The results provide compelling evidence that QuCy7@mPEG NPs are safe without inducing hemolysis, inhibit angiogenesis when exposed to light, and exhibit anti-tumor activity with a 76% reduction in tumor size compared to QuCy7 (40%). Thus suggesting the sulfonate groups can enhance water solubility, and its nanopolymer is biocompatible and possesses superior anti-tumor efficacy.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links