Displaying all 3 publications

Abstract:
Sort:
  1. Mazeli MI, Pahrol MA, Abdul Shakor AS, Kanniah KD, Omar MA
    Sci Total Environ, 2023 May 20;874:162130.
    PMID: 36804978 DOI: 10.1016/j.scitotenv.2023.162130
    In 2016, the World Health Organization (WHO) estimated that approximately 4.2 million premature deaths worldwide were attributable to exposure to particulate matter 2.5 μm (PM2.5). This study assessed the environmental burden of disease attributable to PM2.5 at the national level in Malaysia. We estimated the population-weighted exposure level (PWEL) of PM10 concentrations in Malaysia for 2000, 2008, and 2013 using aerosol optical density (AOD) data from publicly available remote sensing satellite data (MODIS Terra). The PWEL was then converted to PM2.5 using Malaysia's WHO ambient air conversion factor. We used AirQ+ 2.0 software to calculate all-cause (natural), ischemic heart disease (IHD), stroke, chronic obstructive pulmonary disease (COPD), lung cancer (LC), and acute lower respiratory infection (ALRI) excess deaths from the National Burden of Disease data for 2000, 2008 and 2013. The average PWELs for annual PM2.5 for 2000, 2008, and 2013 were 22 μg m-3, 18 μg m-3 and 24 μg m-3, respectively. Using the WHO 2005 Air Quality Guideline cut-off point of PM2.5 of 10 μg m-3, the estimated excess deaths for 2000, 2008, and 2013 from all-cause (natural) mortality were between 5893 and 9781 (95 % CI: 3347-12,791), COPD was between 164 and 957 (95 % CI: 95-1411), lung cancer was between 109 and 307 (95 % CI: 63-437), IHD was between 3 and 163 deaths, according to age groups (95 % CI: 2-394) and stroke was between 6 and 155 deaths, according to age groups (95 % CI: 3-261). An increase in estimated health endpoints was associated with increased estimated PWEL PM2.5 for 2013 compared to 2000 and 2008. Adhering the ambient PM2.5 level to the Malaysian Air Quality Standard IT-2 would reduce the national health endpoints mortality.
  2. Kanniah KD, Kamarul Zaman NAF, Kaskaoutis DG, Latif MT
    Sci Total Environ, 2020 Sep 20;736:139658.
    PMID: 32492613 DOI: 10.1016/j.scitotenv.2020.139658
    Since its first appearance in Wuhan, China at the end of 2019, the new coronavirus (COVID-19) has evolved a global pandemic within three months, with more than 4.3 million confirmed cases worldwide until mid-May 2020. As many countries around the world, Malaysia and other southeast Asian (SEA) countries have also enforced lockdown at different degrees to contain the spread of the disease, which has brought some positive effects on natural environment. Therefore, evaluating the reduction in anthropogenic emissions due to COVID-19 and the related governmental measures to restrict its expansion is crucial to assess its impacts on air pollution and economic growth. In this study, we used aerosol optical depth (AOD) observations from Himawari-8 satellite, along with tropospheric NO2 column density from Aura-OMI over SEA, and ground-based pollution measurements at several stations across Malaysia, in order to quantify the changes in aerosol and air pollutants associated with the general shutdown of anthropogenic and industrial activities due to COVID-19. The lockdown has led to a notable decrease in AOD over SEA and in the pollution outflow over the oceanic regions, while a significant decrease (27% - 30%) in tropospheric NO2 was observed over areas not affected by seasonal biomass burning. Especially in Malaysia, PM10, PM2.5, NO2, SO2, and CO concentrations have been decreased by 26-31%, 23-32%, 63-64%, 9-20%, and 25-31%, respectively, in the urban areas during the lockdown phase, compared to the same periods in 2018 and 2019. Notable reductions are also seen at industrial, suburban and rural sites across the country. Quantifying the reductions in major and health harmful air pollutants is crucial for health-related research and for air-quality and climate-change studies.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links