Displaying all 3 publications

Abstract:
Sort:
  1. Jamal F, Pit S, Johnson DR, Kaplan EL
    J Trop Med Hyg, 1995 Oct;98(5):343-6.
    PMID: 7563264
    T-agglutination patterns of 190 strains of group A streptococci isolated between January 1989 and December 1993 from body fluids (10), throat culture (56), pus (51) and skin lesions (73) were determined. Mucoid colonial morphology was exhibited by 6.3% (12/190) of the strains on initial isolation. Type T-5,11,27,44 comprised 23.7%, followed by T-1,3,13,B3264 (11.1%), T-4,6 (8.4%) and T-8,25, Imp 19 (7.9%). About 42% (80/190) strains could not be characterized by T agglutination pattern. T-typing of 71 selected strains at WHO Collaborating Center, Minneapolis yielded similar results. Nineteen selected strains were further characterized by M-typing; only three strains were M-typeable. These strains were isolated from throat (M1), sputum (M5) and pus (M12). About 68% (48/71) isolates produced serum opacity factor. These data support the existence of as yet uncharacterized group A streptococcal serotypes in this region.
  2. Kaplan E, Baygin M, Barua PD, Dogan S, Tuncer T, Altunisik E, et al.
    Med Eng Phys, 2023 May;115:103971.
    PMID: 37120169 DOI: 10.1016/j.medengphy.2023.103971
    PURPOSE: The classification of medical images is an important priority for clinical research and helps to improve the diagnosis of various disorders. This work aims to classify the neuroradiological features of patients with Alzheimer's disease (AD) using an automatic hand-modeled method with high accuracy.

    MATERIALS AND METHOD: This work uses two (private and public) datasets. The private dataset consists of 3807 magnetic resonance imaging (MRI) and computer tomography (CT) images belonging to two (normal and AD) classes. The second public (Kaggle AD) dataset contains 6400 MR images. The presented classification model comprises three fundamental phases: feature extraction using an exemplar hybrid feature extractor, neighborhood component analysis-based feature selection, and classification utilizing eight different classifiers. The novelty of this model is feature extraction. Vision transformers inspire this phase, and hence 16 exemplars are generated. Histogram-oriented gradients (HOG), local binary pattern (LBP) and local phase quantization (LPQ) feature extraction functions have been applied to each exemplar/patch and raw brain image. Finally, the created features are merged, and the best features are selected using neighborhood component analysis (NCA). These features are fed to eight classifiers to obtain highest classification performance using our proposed method. The presented image classification model uses exemplar histogram-based features; hence, it is called ExHiF.

    RESULTS: We have developed the ExHiF model with a ten-fold cross-validation strategy using two (private and public) datasets with shallow classifiers. We have obtained 100% classification accuracy using cubic support vector machine (CSVM) and fine k nearest neighbor (FkNN) classifiers for both datasets.

    CONCLUSIONS: Our developed model is ready to be validated with more datasets and has the potential to be employed in mental hospitals to assist neurologists in confirming their manual screening of AD using MRI/CT images.

  3. Kaplan E, Chan WY, Altinsoy HB, Baygin M, Barua PD, Chakraborty S, et al.
    J Digit Imaging, 2023 Dec;36(6):2441-2460.
    PMID: 37537514 DOI: 10.1007/s10278-023-00889-8
    Detecting neurological abnormalities such as brain tumors and Alzheimer's disease (AD) using magnetic resonance imaging (MRI) images is an important research topic in the literature. Numerous machine learning models have been used to detect brain abnormalities accurately. This study addresses the problem of detecting neurological abnormalities in MRI. The motivation behind this problem lies in the need for accurate and efficient methods to assist neurologists in the diagnosis of these disorders. In addition, many deep learning techniques have been applied to MRI to develop accurate brain abnormality detection models, but these networks have high time complexity. Hence, a novel hand-modeled feature-based learning network is presented to reduce the time complexity and obtain high classification performance. The model proposed in this work uses a new feature generation architecture named pyramid and fixed-size patch (PFP). The main aim of the proposed PFP structure is to attain high classification performance using essential feature extractors with both multilevel and local features. Furthermore, the PFP feature extractor generates low- and high-level features using a handcrafted extractor. To obtain the high discriminative feature extraction ability of the PFP, we have used histogram-oriented gradients (HOG); hence, it is named PFP-HOG. Furthermore, the iterative Chi2 (IChi2) is utilized to choose the clinically significant features. Finally, the k-nearest neighbors (kNN) with tenfold cross-validation is used for automated classification. Four MRI neurological databases (AD dataset, brain tumor dataset 1, brain tumor dataset 2, and merged dataset) have been utilized to develop our model. PFP-HOG and IChi2-based models attained 100%, 94.98%, 98.19%, and 97.80% using the AD dataset, brain tumor dataset1, brain tumor dataset 2, and merged brain MRI dataset, respectively. These findings not only provide an accurate and robust classification of various neurological disorders using MRI but also hold the potential to assist neurologists in validating manual MRI brain abnormality screening.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links