Displaying all 14 publications

Abstract:
Sort:
  1. Son R, Rusu G, Karim MI
    J Appl Microbiol, 1997 Feb;82(2):240-4.
    PMID: 12452600
    Thirty-six strains of Escherichia coli isolated from animals in Bario, a remote area in Sarawak, Malaysia, were examined for presence of plasmid DNA and their susceptibility to nine antimicrobial agents. Of the total 36 isolates, five bovine and six canine isolates were found to contain plasmid DNA ranging in sizes from 2.6 to 70 kilobases. All were susceptible to chloramphenicol, erythromycin, gentamicin, nalidixic acid and neomycin but resistance to ampicillin (47%), erythromycin (19%), streptomycin (25%) and tetracycline (11%) was observed. Resistance was associated with carriage of a 47 kb (SC98), 70 kb, (SC133) and 56 and 4.6 kb (SC119) plasmids which were transmissible to the Escherichia coli K12 recipient. It is concluded that animals form a potential reservoir of R plasmids carrying E. coli in the study area.
  2. Abdul Samah O, Ibrahim N, Alimon H, Abdul Karim MI
    World J Microbiol Biotechnol, 1993 Sep;9(5):603-4.
    PMID: 24420212 DOI: 10.1007/BF00386306
    Acetic and lactic acid bacteria on fermented cocoa beans were maximally 2.0×10(6) and 1.9×10(6) c.f.u./g wet wt, respectively. Acetic and lactic acids were detected on the second and fourth days of fermentation and were maximally 140 and 45 mg/10 g beans, respectively. There was a positive correlation between the sizes of the relevant microbial populations and the amounts of acids produced during fermentation.
  3. Son R, Ansary A, Rusul G, Karim MI
    World J Microbiol Biotechnol, 1996 May;12(3):243-6.
    PMID: 24415231 DOI: 10.1007/BF00360921
    Three strains of verotoxin-producing Escherichia coli isolated from patients with haemorrhagic colitis harboured plasmids ranging in size from 2.7 kb to 91.2 kb. Those plasmids ranging from 2.7 kb to 6.8 kb hybridized to Shiga-like toxin I and Shiga-like toxin II gene probes.
  4. Ong LG, Abd-Aziz S, Noraini S, Karim MI, Hassan MA
    Appl Biochem Biotechnol, 2004 8 12;118(1-3):73-9.
    PMID: 15304740
    The oil palm sector is one of the major plantation industries in Malaysia. Palm kernel cake is a byproduct of extracted palm kernel oil. Mostly palm kernel cake is wasted or is mixed with other nutrients and used as animal feed, especially for ruminant animals. Recently, palm kernel cake has been identified as an important ingredient for the formulation of animal feed, and it is also exported especially to Europe, South Korea, and Japan. It can barely be consumed by nonruminant (monogastric) animals owing to the high percentages of hemicellulose and cellulose contents. Palm kernel cake must undergo suitable pretreatment in order to decrease the percentage of hemicellulose and cellulose. One of the methods employed in this study is fermentation with microorganisms, particularly fungi, to partially degrade the hemicellulose and cellulose content. This work focused on the production of enzymes by Aspergillus niger and profiling using palm kernel cake as carbon source.
  5. Radu S, Ling OW, Rusul G, Karim MI, Nishibuchi M
    J Microbiol Methods, 2001 Aug;46(2):131-9.
    PMID: 11412923
    Twenty-five and three strains of Escherichia coli O157:H7 were identified from 25 tenderloin beef and three chicken meat burger samples, respectively. The bacteria were recovered using the immunomagnetic separation procedure followed by selective plating on sorbitol MacConkey agar and were identified as E. coli serotype O157:H7 with three primer pairs that amplified fragments of the SLT-I, SLT-II and H7 genes in PCR assays. Susceptibility testing to 14 antibiotics showed that all were resistant to two or more antibiotics tested. Although all 28 strains contained plasmid, there was very little variation in the plasmid sizes observed. The most common plasmid of 60 MDa was detected in all strains. We used DNA fingerprinting by randomly amplified polymorphic DNA (RAPD) and pulsed-field gel electrophoresis (PFGE) to compare the 28 E. coli O157:H7 strains. At a similarity level of 90%, the results of PFGE after restriction with XbaI separated the E. coli O157:H7 strains into 28 single isolates, whereas RAPD using a single 10-mer oligonucleotides separated the E. coli O157:H7 strains into two clusters and 22 single isolates. These typing methods should aid in the epidemiological clarification of the E. coli O157:H7 in the study area.
  6. Ariff AB, Rosfarizan M, Sobri MA, Karim MI
    Environ Technol, 2001 Jun;22(6):697-704.
    PMID: 11482390
    Research was undertaken to investigate the treatment of fishery washing water using Bacillus sphaericus, and to recover the spores for subsequent use as bioinsecticide to control the population of mosquitoes. This treatment method could reduce pollution due to organic matter by decreasing the value of Chemical Oxygen Demand (COD) and Biological Oxygen Demand (BOD) by about 85% and 92%, respectively. The maximum concentration of spores (83.3 x 10(7) spores ml(-1)) using normal concentration of filtered fishery washing water was only about 27% lower than that obtained in fermentation using 0.25% (w/v) yeast extract. The larvicidal activity of the spores produced in fermentation using fishery washing water to Culex quinquefaciatus, as measured by LD50 after 48 h, was almost the same as the larvicidal activity of spores obtained from fermentation using yeast extract.
  7. Loh CW, Fakhru'l-Razi A, Hassan MA, Karim MI
    PMID: 10595448
    This study involves the production of short-chain organic acids from kitchen wastes as intermediates for the production of biodegradable plastics. Flasks, without mixing were used for the anaerobic conversion of the organic fraction of kitchen wastes into short-chain organic acids. The influence of pH, temperature and addition of sludge cake on the rate of organic acids production and yield were evaluated. Fermentations were carried out in an incubator at different temperatures controlled at 30 degrees C. 40 degrees C, 50 degrees C, 60 degrees C and uncontrolled at room temperature. The pH was also varied at pH 5, 6, 7, and uncontrolled pH. 1.0 M phosphate buffer was used for pH control, and 1.0 M HCl and 1.0 M NaOH were added when necessary. Sludge cake addition enhanced the rate of maximum acids production from 4 days to 1 day. The organic acids produced were maximum at pH 7 and 50 degrees C i.e., 39.84 g/l on the fourth day of fermentation with a yield of 0.87 g/g soluble COD consumed, and 0.84 g/g TVS. The main organic acid produced was lactic acid (65-85%), with small amounts of acetic (10-30%), propionic (5-10%), and butyric (5-20%) acids. The results of this study showed that kitchen wastes could be fermented to high concentration of organic acids, which could be used as substrates for the production of biodegradable plastics.
  8. Tang SN, Fakhru'l-Razi A, Hassan MA, Karim MI
    PMID: 10595441
    Rubber latex effluent is a polluting source that has a high biochemical oxygen demand (BOD). It is estimated that about 100 million liters of effluent are discharged daily from rubber processing factories. Utilization of this effluent such as the use of a coupled system not only can reduce the cost of treatment but also yield a fermentation feedstock for the production of bioplastic. This study initially was carried out to increase the production of organic acids by anaerobic treatment of rubber latex effluent. It was found that through anaerobic treatment the concentration of organic acids did not increase. Consequently, separation of organic acids from rubber latex effluent by anion exchange resin was examined as a preliminary study of recovering acetic and propionic acids. However, the suspended solids (SS) content in the raw effluent was rather high which partially blocked the ion-exchange columns. Lime was used to remove the SS in the rubber latex effluent. After the lime precipitation process, organic acids were found to adsorb strongly onto the anion exchange resin. Less adsorption of organic acids onto the resin was observed before the lime precipitation. This was probably due to more sites being occupied by colloidal particles on the resin thus inhibiting the adsorption of organic acids. The initial concentration of organic acids in the raw effluent was 3.9 g/L. After ion exchange, the concentration of the organic acids increased to 27 g/L, which could be utilized for production of polyhydroxyalkanoates (PHA). For PHA accumulation stage, concentrated rubber latex effluent obtained from ion exchange resins and synthetic acetic acid were used as the carbon source. Quantitative analyses from fed batch culture via HPLC showed that the accumulation of PHA in Alcaligenes eutrophus was maximum with a concentration of 1.182 g/L when cultivated on synthetic acetic acid, corresponding to a yield of 87% based on its cell dry weight. The dry cell weight increased from 0.71 to 1.67 g/L. On the other hand, using concentrated rubber latex effluent containing acetic and propionic acids resulted in reduced PHA content by dry weight (14%) but the dry cell weight increased from 0.49 to 1.30 g/L. The results clearly indicated that the cells grow well in rubber latex effluent but no PHA was accumulated. This could be due to the high concentration of propionic acid in culture broth or other factors such as heavy metals. Thus further work is required before rubber latex effluent can be utilized as a substrate for PHA production industrially.
  9. Mohd-Karim MI, Sulaiman AR, Munajat I, Syurahbil AH
    Malays Orthop J, 2015 Jul;9(2):9-12.
    PMID: 28435602 MyJurnal DOI: 10.5704/MOJ.1507.005
    BACKGROUND: This study was conducted to find out the age when tibiofemoral angle starts to be in valgus and reaches maximum angle. The differences of the angles between genders were also studied.

    METHODOLOGY: This cross sectional study on tibiofemoral angle was conducted among 160 normal healthy children using clinical measurement method. The children between 2 18 months to 6 years old were assigned to 5 specific age groups of 32 children with equal sex distribution.

    RESULT: This study had shown a good inter-observer reliability of tibiofemoral angle measurement with intraclass correlation coefficient (ICC) of 0.87 with narrow margin of 95% confident interval (95% CI: 0.73, 0.94). The mean tibiofemoral angle for children at 2 , 3 , 4 , 5 and 6 years old were 2.25° (SD=0.53), 8.73° (SD=0.95), 7.53° (SD=1.40), 7.27° (SD=1.14) and 6.72° (SD=0.98) respectively. The age when they achieved maximum valgus tibiofemoral angle was 3 years old. The maximum mean (SD) tibiofemoral angle for boys, girls and all children were 8.91° (SD=1.17), 8.56° (SD=0.62) and 8.73° (SD=0.95)respectively. The mean tibiofemoral angle showed no statistically significant difference between girls and boys except for the 5-year-old group, in which the mean TF angle for girls was 7.560 (SD=0.95) and for the boys was 6.970 (SD=1.26) with p-value of 0.037.

    CONCLUSION: Measurement of tibiofemoral angle using the clinical method had a very good inter-observer reliability. The tibiofemoral angle in Malay population was valgus since the age of 2 years with maximum angle of 8.730 (SD=0.95) achieved at the age of 3 years.

  10. Rosfarizan M, Ariff AB, Hassan MA, Karim MI
    Folia Microbiol (Praha), 1998;43(5):459-64.
    PMID: 9867479
    Direct conversion of gelatinized sago starch into kojic acid by Aspergillus flavus strain having amylolytic enzymes was carried out at two different scales of submerged batch fermentation in a 250-mL shake flask and in a 50-L stirred-tank fermentor. For comparison, fermentations were also carried out using glucose and glucose hydrolyzate from enzymic hydrolysis of sago starch as carbon sources. During kojic acid fermentation of starch, starch was first hydrolyzed to glucose by the action of alpha-amylase and glucoamylase during active growth phase. The glucose remaining during the production phase (non-growing phase) was then converted to kojic acid. Kojic acid production (23.5 g/L) using 100 g/L sago starch in a shake flask was comparable to fermentation of glucose (31.5 g/L) and glucose hydrolyzate (27.9 g/L) but in the 50-L fermentor was greatly reduced due to non-optimal aeration conditions. Kojic acid production using glucose was higher in the 50-L fermentor than in the shake flask.
  11. Arifin MA, Mel M, Abdul Karim MI, Ideris A
    J Biomed Biotechnol, 2010;2010:586363.
    PMID: 20625497 DOI: 10.1155/2010/586363
    The aim of this study is to prepare a model for the production of Newcastle disease virus (NDV) lentogenic F strain using cell culture in bioreactor for live attenuated vaccine preparation. In this study, firstly we investigated the growth of Vero cells in several culture media. The maximum cell number was yielded by culture of Vero cells in Dulbecco's Modified Eagle Medium (DMEM) which was 1.93 x 10(6) cells/ml. Secondly Vero cells were grown in two-litre stirred tank bioreactor by using several commercial microcarriers. We achieved the maximum cell concentration about 7.95 x 10(5) cells/ml when using Cytodex 1. Later we produced Newcastle Disease virus in stirred tank bioreactor based on the design developed using Taguchi L4 method. Results reveal that higher multiplicity of infection (MOI) and size of cell inoculums can yield higher virus titer. Finally, virus samples were purified using high-speed centrifugation based on 3( * *)(3-1) Fractional Factorial Design. Statistical analysis showed that the maximum virus titer can be achieved at virus sample concentration of 58.45% (v/v), centrifugation speed of 13729 rpm, and centrifugation time of 4 hours. As a conclusion, high yield of virus titer could be achieved through optimization of cell culture in bioreactor and separation by high-speed centrifugation.
  12. Mel M, Karim MI, Yusuf SA, Hashim YZ, Ahmad Nor Y
    Cytotechnology, 2010 Oct;62(5):423-30.
    PMID: 20953703 DOI: 10.1007/s10616-010-9294-9
    This research was conducted to examine the growth profile, growth kinetics, and insulin-secretory responsiveness of BRIN-BD11 cells grown in optimized medium on different types of microcarriers (MCs). Comparisons were made on modified polystyrene (Hillex(®) II) and crosslinked polystyrene Plastic Plus (PP) from Solohill Engineering. The cell line producing insulin was cultured in a 25 cm(2) T-flask as control while MCs based culture was implemented in a stirred tank bioreactor with 1 L working volume. For each culture type, the viable cell number, glucose, lactate, glutamate, and insulin concentrations were measured and compared. Maximum viable cell number was obtained at 1.47 × 10(5) cell/mL for PP microcarrier (PPMCs) culture, 1.35 × 10(5) cell/mL Hillex(®) II (HIIMCs) culture and 0.95 × 10(5) cell/mL for T-flask culture, respectively. The highest insulin concentration has been produced in PPMCs culture (5.31 mg/L) compared to HIIMCs culture (2.01 mg/L) and T-flask culture (1.99 mg/L). Therefore overall observation suggested that PPMCs was likely preferred to be used for BRIN-BD11 cell culture as compared with Hillex(®) II MCs.
  13. Shukor MY, Rahman MF, Shamaan NA, Lee CH, Karim MI, Syed MA
    Appl Biochem Biotechnol, 2008 Mar;144(3):293-300.
    PMID: 18556818
    Molybdenum-reducing activity in the heterotrophic bacteria is a phenomenon that has been reported for more than 100 years. In the presence of molybdenum in the growth media, bacterial colonies turn to blue. The enzyme(s) responsible for the reduction of molybdenum to molybdenum blue in these bacteria has never been purified. In our quest to purify the molybdenum-reducing enzyme, we have devised a better substrate for the enzyme activity using laboratory-prepared phosphomolybdate instead of the commercial 12-phosphomolybdate we developed previously. Using laboratory-prepared phosphomolybdate, the highest activity is given by 10:4-phosphomolybdate. The apparent Michaelis constant, Km for the laboratory-prepared 10:4-phosphomolybdate is 2.56 +/- 0.25 mM (arbitrary concentration), whereas the apparent V(max) is 99.4 +/- 2.85 nmol Mo-blue min(-1) mg(-1) protein. The apparent Michaelis constant or Km for NADH as the electron donor is 1.38 +/- 0.09 mM, whereas the apparent V(max) is 102.6 +/- 1.73 nmol Mo-blue min(-1) mg(-l) protein. The apparent Km and V(max) for another electron donor, NADPH, is 1.43 +/- 0.10 mM and 57.16 +/- 1.01 nmol Mo-blue min(-1) mg(-1) protein, respectively, using the same batch of molybdenum-reducing enzyme. The apparent V(max) obtained for NADH and 10:4-phosphomolybdate is approximately 13 times better than 12-phoshomolybdate using the same batch of enzyme, and hence, the laboratory-prepared phosphomolybdate is a much better substrate than 12-phoshomolybdate. In addition, 10:4-phosphomolybdate can be routinely prepared from phosphate and molybdate, two common chemicals in the laboratory.
  14. Madihah MS, Ariff AB, Khalil MS, Suraini AA, Karim MI
    Folia Microbiol (Praha), 2001;46(3):197-204.
    PMID: 11702403
    A study of the kinetics and performance of solvent-yielding batch fermentation of individual sugars and their mixture derived from enzymic hydrolysis of sago starch by Clostridium acetobutylicum showed that the use of 30 g/L gelatinized sago starch as the sole carbon source produced 11.2 g/L total solvent, i.e. 1.5-2 times more than with pure maltose or glucose used as carbon sources. Enzymic pretreatment of gelatinized sago starch yielding maltose and glucose hydrolyzates prior to the fermentation did not improve solvent production as compared to direct fermentation of gelatinized sago starch. The solvent yield of direct gelatinized sago starch fermentation depended on the activity and stability of amylolytic enzymes produced during the fermentation. The pH optima for alpha-amylase and glucoamylase were found to be at 5.3 and 4.0-4.4, respectively. alpha-Amylase showed a broad pH stability profile, retaining more than 80% of its maximum activity at pH 3.0-8.0 after a 1-d incubation at 37 degrees C. Since C. acetobutylicum alpha-amylase has a high activity and stability at low pH, this strain can potentially be employed in a one-step direct solvent-yielding fermentation of sago starch. However, the C. acetobutylicum glucoamylase was only stable at pH 4-5, maintaining more than 90% of its maximum activity after a 1-d incubation at 37 degrees C.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links