Displaying all 2 publications

Abstract:
Sort:
  1. Mubashir M, Ashena R, Bokhari A, Mukhtar A, Saqib S, Ali A, et al.
    Chemosphere, 2022 Mar;291(Pt 3):133006.
    PMID: 34813846 DOI: 10.1016/j.chemosphere.2021.133006
    The paper evaluates the routes towards the evaluation of membranes using ZIF-62 metal organic framework (MOF) nano-hybrid dots for environmental remediation. Optimization of interaction of operating parameters over the rooted membrane is challenging issue. Subsequently, the interaction of operating parameters including temperature, pressure and CO2 gas concentration over the resultant rooted membranes are evaluated and optimized using response surface methodology for environmental remediation. In addition, the stability and effect of hydrocarbons on the performance of the resulting membrane during the gas mixture separation are evaluated at optimum conditions to meet the industrial requirements. The characterization results verified the fabrication of the ZIF-62 MOF rooted composite membrane. The permeation results demonstrated that the CO2 permeability and CO2/CH4 selectivity of the composite membrane was increased from 15.8 to 84.8 Barrer and 12.2 to 35.3 upon integration of ZIF-62 nano-glass into cellulose acetate (CA) polymer. Subsequently, the optimum conditions have been found at a temperature of 30 °C, the pressure of 12.6 bar and CO2 feed concentration of 53.3 vol%. These optimum conditions revealed the highest CO2 permeability, CH4 permeability and CO2/CH4 separation factor of 47.9 Barrer, 0.2 Barrer and 26.8. The presence of hydrocarbons in gas mixture dropped the CO2 permeability of 56.5% and separation factor of 46.4% during 206 h of testing. The separation performance of the composite membrane remained stable without the presence of hydrocarbons for 206 h.
  2. Shadman S, Chin CMM, Sakundarini N, Yap EH, Fairuz S, Wong XY, et al.
    Environ Res, 2022 Apr 01;205:112458.
    PMID: 34863687 DOI: 10.1016/j.envres.2021.112458
    This study explores the role of renewable energy (RE) penetration in Malaysia's energy security (ES) and its implications for the country's target of 20% capacity in the energy mix by 2025. Renewable energy (RE) is a critical driver of long-term energy security. In 2018, the share of renewable energy in Malaysia's energy mix was 9%, falling far short of the national target of 20% penetration by 2025. This study employs a system dynamics approach to investigate the relationship between RE penetration and correlated indicators from energy security (ES) dimensions: energy availability, environmental sustainability, and socio-economics. The causal relationships between the three-dimensional indicators of ES have been established using causal and stock and flow logic. Simulated results show that energy consumption has increased sharply, while energy efficiency and economic growth have only increased by a small margin with an increase in RE from 2015 to 2020. The energy intensity is expected to rise slightly by the end of the fifth year. As a result, the overall impact is positive for Malaysia's environmental sustainability while reducing its reliance on energy imports and meeting national economic growth demands.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links