Displaying all 2 publications

Abstract:
Sort:
  1. Qadir D, Nasir R, Mukhtar HB, Keong LK
    Water Environ Res, 2020 Sep;92(9):1306-1324.
    PMID: 32170974 DOI: 10.1002/wer.1326
    The asymmetric polyethersulfone (PES-15 wt.%) mixed-matrix membranes were prepared by incorporation of carbon molecular sieve (CMS) with varying concentrations (1, 3, and 5 wt.%). Physicochemical characterization of synthesized membranes was carried out using field emission scanning electron microscope, atomic force microscopy, contact angle, thermogravimetric analysis, zeta potential analyzer, porosity, and mean pore sizes. Performance analysis of synthesized mixed-matrix membranes was carried out by varying the operating parameters such as pressure (2-10 bar), feed concentration (100-1,000 mg/L), and cations type (Na+ , Ca2+ , Mg2+ , and Sn2+ ). Effect of operating parameters and CMS concentration was investigated on pure water flux (PWF), permeate flux, and rejection of membranes. It was found that mixed-matrix membrane containing 15 wt.% PES with 1 wt.% CMS displayed the superior physicochemical characteristics in terms of hydrophilicity (37.9°), surface charge (-13.8 mV), mean pore diameter (6.04 nm), and thermal properties (Tg  = 218.5°C), and overall performance. E5C1 membrane showed 1.5 times higher PWF (75.5 L m-2  hr-1 ) and incremented in rejection for all salts than the nascent membrane. PRACTITIONER POINTS: Carbon molecular sieve-embedded mixed-matrix membranes were synthesized by phase inversion method. The resultant membranes experienced improved hydrophilicity, roughness, surface charge, porosity, and mean pore diameter with 1 wt.% CMS loading. The pure water flux was improved from 55.77 to 75.05 L m-2  hr-1 when 1 wt.% CMS was added in pure PES. The observed rejection of a mixed-matrix membrane with 1 wt.% CMS was the maximum for all salts.
  2. Remali J, Sarmin N'M, Ng CL, Tiong JJL, Aizat WM, Keong LK, et al.
    PeerJ, 2017;5:e3738.
    PMID: 29201559 DOI: 10.7717/peerj.3738
    Background: Streptomyces are well known for their capability to produce many bioactive secondary metabolites with medical and industrial importance. Here we report a novel bioactive phenazine compound, 6-((2-hydroxy-4-methoxyphenoxy) carbonyl) phenazine-1-carboxylic acid (HCPCA) extracted from Streptomyces kebangsaanensis, an endophyte isolated from the ethnomedicinal Portulaca oleracea.

    Methods: The HCPCA chemical structure was determined using nuclear magnetic resonance spectroscopy. We conducted whole genome sequencing for the identification of the gene cluster(s) believed to be responsible for phenazine biosynthesis in order to map its corresponding pathway, in addition to bioinformatics analysis to assess the potential of S. kebangsaanensis in producing other useful secondary metabolites.

    Results: The S. kebangsaanensis genome comprises an 8,328,719 bp linear chromosome with high GC content (71.35%) consisting of 12 rRNA operons, 81 tRNA, and 7,558 protein coding genes. We identified 24 gene clusters involved in polyketide, nonribosomal peptide, terpene, bacteriocin, and siderophore biosynthesis, as well as a gene cluster predicted to be responsible for phenazine biosynthesis.

    Discussion: The HCPCA phenazine structure was hypothesized to derive from the combination of two biosynthetic pathways, phenazine-1,6-dicarboxylic acid and 4-methoxybenzene-1,2-diol, originated from the shikimic acid pathway. The identification of a biosynthesis pathway gene cluster for phenazine antibiotics might facilitate future genetic engineering design of new synthetic phenazine antibiotics. Additionally, these findings confirm the potential of S. kebangsaanensis for producing various antibiotics and secondary metabolites.

Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links