Displaying all 3 publications

Abstract:
Sort:
  1. Xing P, Zhang H, Derbali M, Sefat SM, Alharbi AH, Khafaga DS, et al.
    Heliyon, 2023 Jul;9(7):e17622.
    PMID: 37424589 DOI: 10.1016/j.heliyon.2023.e17622
    The Internet of Things (IoT) is a network of smart gadgets that are connected through the Internet, including computers, cameras, smart sensors, and mobile phones. Recent developments in the industrial IoT (IIoT) have enabled a wide range of applications, from small businesses to smart cities, which have become indispensable to many facets of human existence. In a system with a few devices, the short lifespan of conventional batteries, which raises maintenance costs, necessitates more replacements and has a negative environmental impact, does not present a problem. However, in networks with millions or even billions of devices, it poses a serious problem. The rapid expansion of the IoT paradigm is threatened by these battery restrictions, thus academics and businesses are now interested in prolonging the lifespan of IoT devices while retaining optimal performance. Resource management is an important aspect of IIoT because it's scarce and limited. Therefore, this paper proposed an efficient algorithm based on federated learning. Firstly, the optimization problem is decomposed into various sub-problems. Then, the particle swarm optimization algorithm is deployed to solve the energy budget. Finally, a communication resource is optimized by an iterative matching algorithm. Simulation results show that the proposed algorithm has better performance as compared with existing algorithms.
  2. Khafaga DS, Ibrahim A, El-Kenawy EM, Abdelhamid AA, Karim FK, Mirjalili S, et al.
    Diagnostics (Basel), 2022 Nov 21;12(11).
    PMID: 36428952 DOI: 10.3390/diagnostics12112892
    Human skin diseases have become increasingly prevalent in recent decades, with millions of individuals in developed countries experiencing monkeypox. Such conditions often carry less obvious but no less devastating risks, including increased vulnerability to monkeypox, cancer, and low self-esteem. Due to the low visual resolution of monkeypox disease images, medical specialists with high-level tools are typically required for a proper diagnosis. The manual diagnosis of monkeypox disease is subjective, time-consuming, and labor-intensive. Therefore, it is necessary to create a computer-aided approach for the automated diagnosis of monkeypox disease. Most research articles on monkeypox disease relied on convolutional neural networks (CNNs) and using classical loss functions, allowing them to pick up discriminative elements in monkeypox images. To enhance this, a novel framework using Al-Biruni Earth radius (BER) optimization-based stochastic fractal search (BERSFS) is proposed to fine-tune the deep CNN layers for classifying monkeypox disease from images. As a first step in the proposed approach, we use deep CNN-based models to learn the embedding of input images in Euclidean space. In the second step, we use an optimized classification model based on the triplet loss function to calculate the distance between pairs of images in Euclidean space and learn features that may be used to distinguish between different cases, including monkeypox cases. The proposed approach uses images of human skin diseases obtained from an African hospital. The experimental results of the study demonstrate the proposed framework's efficacy, as it outperforms numerous examples of prior research on skin disease problems. On the other hand, statistical experiments with Wilcoxon and analysis of variance (ANOVA) tests are conducted to evaluate the proposed approach in terms of effectiveness and stability. The recorded results confirm the superiority of the proposed method when compared with other optimization algorithms and machine learning models.
  3. Elshewey AM, Shams MY, Tawfeek SM, Alharbi AH, Ibrahim A, Abdelhamid AA, et al.
    Diagnostics (Basel), 2023 Nov 13;13(22).
    PMID: 37998575 DOI: 10.3390/diagnostics13223439
    The paper focuses on the hepatitis C virus (HCV) infection in Egypt, which has one of the highest rates of HCV in the world. The high prevalence is linked to several factors, including the use of injection drugs, poor sterilization practices in medical facilities, and low public awareness. This paper introduces a hyOPTGB model, which employs an optimized gradient boosting (GB) classifier to predict HCV disease in Egypt. The model's accuracy is enhanced by optimizing hyperparameters with the OPTUNA framework. Min-Max normalization is used as a preprocessing step for scaling the dataset values and using the forward selection (FS) wrapped method to identify essential features. The dataset used in the study contains 1385 instances and 29 features and is available at the UCI machine learning repository. The authors compare the performance of five machine learning models, including decision tree (DT), support vector machine (SVM), dummy classifier (DC), ridge classifier (RC), and bagging classifier (BC), with the hyOPTGB model. The system's efficacy is assessed using various metrics, including accuracy, recall, precision, and F1-score. The hyOPTGB model outperformed the other machine learning models, achieving a 95.3% accuracy rate. The authors also compared the hyOPTGB model against other models proposed by authors who used the same dataset.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links