Displaying all 3 publications

Abstract:
Sort:
  1. Nadarajah K, Khan AF, Rahim NA
    Recent Pat Nanotechnol, 2016;10(1):26-43.
    PMID: 27018271
    BACKGROUND: Germanium (Ge) nanostructures exhibit wide range of potential applications in the field of nanoscale devices due to their excellent optical and electrical properties and have gained significant interest due to the Bohr exciton radius. Bohr radius of Ge (24.3 nm) is larger than that of Si (4.9 nm), leading to quantum size effects and nanostructures with controllable bandgaps.

    METHODS: This article provides a comprehensive review on various electrolytes for electrodeposition procedures developed to obtain the Ge nanostructures of desired structure, diameter, and density. We discuss the growth mechanisms and influence of different parameters such as type of solution, concentration, and value of applied potential or current density.

    RESULTS: The ionic liquids can be used for the development of Ge nanostructures and provide extensive electrochemical windows for electrodeposition. The obtained SixGe1-x structures also exhibited strong color change (from red to blue) at room temperature during the electrodeposition, which is likely to be due to a quantum size effect.

    CONCLUSION: The main advantages of the ionic liquids are 'it does not decompose', easy to purify and dry. Moreover, it exhibits fairly extensive electrochemical windows greater than 5 V for electrodeposition. Electrodeposition of SixGe1-x nanostructures from ionic liquids is quite a favorable process. The 3DOM Ge electrode is a promising material for nextgeneration lithium ion battery because of its high irreversible specific capacity. Few relevant patents to the topic have been reviewed and cited.

  2. Khan AF, Sajjad W, Rahim NA
    Recent Pat Nanotechnol, 2016;10(1):77-82.
    PMID: 27018275
    BACKGROUND: It is well-known that multi-layer films with nanostructure can give novel properties by interfacial phenomenon and quantum confinement effects. Nanostructured multi-layer thin films are presently being analyzed for their vast applications in the area of optoelectronics technology particularly photovoltaics. Hereof, two dimensional thin films with nanostructure are of prime importance due to their structure dependent optical, electrical, and opto-electronic properties. It has been revealed that these films exhibit quantum confinement effects with band gap engineering. The main focus of the research is to evaluate the effect on structural and optical properties with number of layers.

    METHODS: Nanostructured SnO2-Ge multi-layer thin films were fabricated using electron beam evaporation and resistive heating techniques. Alternate layers of SnO2 and Ge were deposited on glass substrate at a substrate temperature of 300 °C in order to obtain uniform and homogeneous deposition. The substrate temperature of 300 °C has been determined to be effective for the deposition of these multi-layer films from our previous studies. The films were characterized by investigating their structural and optical properties. The structural properties of the as-deposited films were characterized by Rutherford Backscattering Spectroscopy (RBS) and Raman spectroscopy and optical properties by Ultra-Violet-Near infrared (UV-VIS-NIR) spectroscopy.

    RESULTS: RBS studies confirmed that the layer structure has been effectively formed. Raman spectroscopy results show that the peaks of both Ge and SnO2 shifts towards lower wavenumbers (in comparison with bulk Ge and SnO2, suggesting that the films consist of nanostructures and demonstrate quantum confinement effects. UV-VIS-NIR spectroscopy showed an increase in the band gap energy of Ge and SnO2 and shifting of transmittance curves toward higher wavelength by increasing the number of layers. The band gap lies in the range of 0.9 to 1.2 eV for Ge, while for SnO2, it lies between 1.7 to 2.1 eV.

    CONCLUSION: Analysis of results suggests that the nanostructured SnO2-Ge multi-layer thin film can work as heterojunction materials with quantum confinement effects. Accordingly, the present SnO2-Ge multi-layer films may be employed for photovoltaic applications. Few relevant patents to the topic have been reviewed and cited.

  3. Ong TA, Peh SC, Goh KSK, Naicker MS, Khan AF, Chua BC, et al.
    Asian J Surg, 2003 Jan;26(1):31-6.
    PMID: 12527492 DOI: 10.1016/S1015-9584(09)60212-8
    To study the incidence of p53 oncoprotein overexpression and its relationship to tumour grade, stage and clinical prognosis in a cohort of local Malaysian patients.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links