METHODS: The liquids were adsorbed on microcrystalline cellulose, and all developed formulations were compressed using 10.5 mm shallow concave round punches.
RESULTS: The resulting tablets were evaluated for different quality-control parameters at pre- and postcompression levels. Simvastatin showed better solubility in a mixture of oils and Tween 60 (10:1). All the developed formulations showed lower self-emulsification time (˂200 seconds) and higher cloud point (˃60°C). They were free of physical defects and had drug content within the acceptable range (98.5%-101%). The crushing strength of all formulations was in the range of 58-96 N, and the results of the friability test were within the range of USP (≤1). Disintegration time was within the official limits (NMT 15 min), and complete drug release was achieved within 30 min.
CONCLUSION: Using commonly available excipients and machinery, SEDDS-based tablets with better dissolution profile and bioavailability can be prepared by direct compression. These S-SEDDSs could be a better alternative to conventional tablets of simvastatin.
MATERIALS AND METHODS: Three groups were formed, consisting of twelve male Sprague Dawley rats: a control group designated as 0-day, and experimental groups labeled as 7-days and 14-days. Periodontitis induced by concurrent infection with sterile wire 0.2 mm insertion and E. faecalis inoculation is performed into the gingival sulcus located between the maxillary right 1st and 2nd molar teeth area. After euthanasia, tissue samples around the maxillary gingiva, maxillary jaw samples, kidney and heart tissues were obtained for quantitative Real-Time PCR assay and histopathological analysis.
RESULTS: Results showed at 7-days, there was an upregulation of E. faecalis gene expression in the gingiva, heart, and kidney samples as well as infiltration of the inflammatory cells at 7-days post induction, which consequently decreased at 14-days.
CONCLUSION: Thus, the study suggests dissemination of E. faecalis from gingival tissue to the heart, kidney which could be probable link between periodontal disease, heart, and kidney disease.
OBJECTIVE: This study aimed to determine the LD50 of synbiotic containing probiotic Streptococcus salivarius K12 and prebiotic Musa acuminata peel extract.
MATERIALS AND METHODS: The determination of LD50 is done according to the Acute Oral Toxicity test No. 425 (AOT425). For limit test, five female Sprague Dawley rats were given a limit dose of 2000 mg/kg of the synbiotic mixture once orally, and observed for 12 days. For subacute toxicity test, twenty female Sprague Dawley rats were randomised into 4 groups (n = 5). Control group received saline, others received synbiotic mixture at doses 175 mg/kg, 550 mg/kg, and 2000 mg/kg, respectively, and observed for 14 days. Animals were euthanised on day-15, blood was collected, and subjected to haematological and biochemical analyses. Kidney and liver were preserved for histopathological examination.
RESULT: No significant changes on the average body weight of the animals throughout the study. Haematological parameters and biochemical analysis do not depict any changes related to acute toxicity. Histopathology analysis depicted mild changes on kidney and liver.
CONCLUSION: Based on the data, the LD50 of the synbiotic formulation is higher than 2000 mg/kb, with no sign of acute toxicity observed on all parameters.