There has been a great interest in myeloid-derived suppressor cells (MDSCs) due to their biological functions in tumor-mediated immune escape by suppressing antitumor immune responses. These cells arise from altered myelopoiesis in response to the tumor-derived factors. The most recognized function of MDSCs is suppressing anti-tumor immune responses by impairing T cell functions, and these cells are the most important players in cancer dissemination and metastasis. Therefore, understanding the factors and the mechanism of MDSC differentiation, expansion, and recruitment into the tumor microenvironment can lead to its control. However, most of the studies only defined MDSCs with no further characterization of granulocytic and monocytic subsets. In this review, we discuss the mechanisms by which specific MDSC subsets contribute to cancers. A better understanding of MDSC subset development and the specific molecular mechanism is needed to identify treatment targets. The understanding of the specific molecular mechanisms responsible for MDSC accumulation would enable more precise therapeutic targeting of these cells.
The aim of this study was to assess the degree of spermatogenesis defects in sperm analysis in long-term male survivors after allogeneic hematopoietic stem cell transplantation in order to identify the risk factors related to potential infertility after hematopoietic stem cell transplantation and to provide data on longitudinal sperm recovery after hematopoietic stem cell transplantation. Here, the Late Effects Working Party of the European Group for Blood and Marrow Transplantation reports data of sperm analysis from 224 males who underwent hematopoietic stem cell transplantation. Median time between transplantation and sperm analysis was 63 months (8-275 months). At last sperm analysis, presence of any degree of spermatozoa was reported in 70 (31%) and complete azoospermia in 154 (69%) patients. In multivariate analysis, being conditioned with total body irradiation (RR 7.1; 95% CI: 3.4-14.8) and age over 25 years at transplantation (RR 2.4; 95% CI: 1.09-5.2) were significantly associated with higher risk for azoospermia. In patients not conditioned with total body irradiation, ongoing chronic graft-versus-host disease is the main adverse factor for sperm recovery (RR of 3.11; 95% CI: 1.02-9.47; P=0.045). Already established risk factors, such as total body irradiation and age older than 25 years at hematopoietic stem cell transplantation, were seen to be the most relevant adverse risk factor for sperm production after hematopoietic stem cell transplantation. Furthermore, for the first time, ongoing graft-versus-host disease has been shown to be the most relevant adverse factor for sperm recovery, particularly in patients conditioned without total body irradiation. We also introduce a useful scoring system to predict the probability of male long-term survivors' azoospermia.
Eighty-eight multi-ethnic Malaysian pediatric acute lymphoblastic leukemia (ALL) patients were screened for the TEL-AML1 rearrangement by reverse transcription-polymerase chain reaction (RT-PCR). Fluorescence in situ hybridization (FISH) was used as an independent screen for 30 cases and to confirm RT-PCR positive cases. Seventeen patients, or 19%, were found to be t(12;21) positive. Ethnically the group comprised 12 Malays, 4 Chinese, and 1 Indian. All patients, including 1 with an unusual blast cell morphology who suffered an early relapse and death, were characteristic TEL-AML1 cases in cell count, age, ALL subset classification, and fusion transcript expressed. This study shows that in Malaysia, TEL-AML1 is found in the same distinct ALL subset and at a similar frequency as in other diverse childhood ALL cohorts.