Displaying all 3 publications

  1. Sekine M, Yoshida A, Akizuki S, Kishi M, Toda T
    Water Sci Technol, 2020 Sep;82(6):1070-1080.
    PMID: 33055397 DOI: 10.2166/wst.2020.153
    A novel coupling process using an aerobic bacterial reactor with nitrification and sulfur-oxidization functions followed by a microalgal reactor was proposed for simultaneous biogas desulfurization and anaerobic digestion effluent (ADE) treatment. ADE nitrified by bacteria has a potential to be directly used as a culture medium for microalgae because ammonium nitrogen, including inhibitory free ammonia (NH3), has been converted to harmless NO3-. To demonstrate this hypothesis, Chlorella sorokiniana NIES-2173, which has ordinary NH3 tolerance; that is, 1.6 mM of EC50 compared with other species, was cultivated using untreated/treated ADE. Compared with the use of a synthetic medium, when using ADE with 1-10-fold dilutions, the specific growth rate and growth yield maximally decreased by 44% and 88%, respectively. In contrast, the algal growth using undiluted ADE treated by nitrification-desulfurization was almost the same as with using synthetic medium. It was also revealed that 50% of PO43- and most metal concentrations of ADE decreased following nitrification-desulfurization treatment. Moreover, upon NaOH addition for pH adjustment, the salinity increased to 0.66%. The decrease in metals mitigates the bioconcentration of toxic heavy metals from wastewater in microalgal biomass. Meanwhile, salt stress in microalgae and limiting nutrient supplementation, particularly for continuous cultivation, should be of concern.
  2. Sekine M, Akizuki S, Kishi M, Kurosawa N, Toda T
    Chemosphere, 2020 Apr;244:125381.
    PMID: 31805460 DOI: 10.1016/j.chemosphere.2019.125381
    Sulfide inhibition to nitrifying bacteria has prevented the integration of digestate nitrification and biogas desulfurization to simplify anaerobic digestion systems. In this study, liquid digestate with NaHS solution was treated using nitrifying sludge in a sequential-batch reactor with a long fill period, with an ammonium loading rate of 293 mg-N L-1 d-1 and a stepwise increase in the sulfide loading rate from 0 to 32, 64, 128, and 256 mg-S L-1 d-1. Batch bioassays and microbial community analysis were also conducted with reactor sludge under each sulfide loading rate to quantify the microbial acclimatization to sulfide. In the reactor, sulfide was completely removed. Complete nitrification was maintained up to a sulfide load of 128 mg-S L-1 d-1, which is higher than that in previous reports and sufficient for biogas treatment. In the batch bioassays, the sulfide tolerance of NH4+ oxidizing activity (the 50% inhibitory sulfide concentration) increased fourfold over time with the compositional shift of nitrifying bacteria to Nitrosomonas nitrosa and Nitrobacter spp. However, the sulfur removal rate of the sludge slightly decreased, although the abundance of the sulfur-oxidizing bacteria Hyphomicrobium increased by 30%. Therefore, nitrifying sludge was probably acclimatized to sulfide not by the increasing sulfide removal rate but rather by the increasing nitrifying bacteria, which have high sulfide tolerance. Successful simultaneous nitrification and desulfurization were achieved using a sequential-batch reactor with a long fill period, which was effective in facilitating the present acclimatization.
  3. Furuse Y, Suzuki A, Kishi M, Galang HO, Lupisan SP, Olveda RM, et al.
    J Med Virol, 2010 May;82(6):1071-4.
    PMID: 20419824 DOI: 10.1002/jmv.21763
    Several novel viruses have been recently identified in respiratory samples. However, the epidemiology of these viruses in tropical countries remains unclear. The aim of the present study was to provide an overview of the epidemiology of novel respiratory viruses, including human metapneumovirus, human bocavirus, new subtypes of human coronavirus (NL63 and HKU1), KI virus, WU virus, and Melaka virus in the Philippines, a tropical country. Nasopharyngeal aspirates from 465 patients with influenza-like illness were collected in 2006 and 2007. Reverse transcription polymerase chain reaction (RT-PCR) and PCR were performed to detect viruses from culture-negative specimens. Human metapneumovirus, human bocavirus, human coronavirus HKU1, KI virus, and WU virus were detected for the first time in the Philippines; Melaka virus was not found.
Related Terms
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links