Displaying all 3 publications

Abstract:
Sort:
  1. Kasloff SB, Leung A, Pickering BS, Smith G, Moffat E, Collignon B, et al.
    Sci Rep, 2019 03 26;9(1):5230.
    PMID: 30914663 DOI: 10.1038/s41598-019-40476-y
    In 1998 an outbreak of fatal encephalitis among pig farm workers in Malaysia and Singapore led to the discovery of Nipah henipavirus (NiV), a novel paramyxovirus closely related to Hendra henipavirus with case fatality rates of nearly 40%. Following its initial emergence nearly annual outbreaks of NiV have occurred in Bangladesh with a different, NiV Bangladesh, genotype, where the role of pigs in its transmission remains unknown. The present study provides the first report on susceptibility of domestic pigs to NiV Bangladesh following experimental infection, characterizing acute and long-term phases of disease and pathogenesis. All pigs were successfully infected with NiV Bangladesh following oronasal inoculation, with viral shedding confirmed by a novel genotype-specific qRT-PCR in oral, nasal and rectal excretions and dissemination from the upper respiratory tract to the brain, lungs, and associated lymphatic tissues. Unlike previous NiV Malaysia findings in pigs, clinical signs were absent, viremia was undetectable throughout the study, and only low level neutralizing antibody titers were measured by 28/29 days post-NiV-B infection. Results obtained highlight the need for continued and enhanced NiV surveillance in pigs in endemic and at-risk regions, and raise questions regarding applicability of current serological assays to detect animals with previous NiV-B exposure.
  2. Zhu W, Pickering B, Smith G, Pinette M, Truong T, Babiuk S, et al.
    Front Vet Sci, 2023;10:1120367.
    PMID: 36816187 DOI: 10.3389/fvets.2023.1120367
    INTRODUCTION: Nipah virus (NiV) and Hendra virus (HeV), of the genus Henipavirus, family Paramyxoviridae, are classified as Risk Group 4 (RG4) pathogens that cause respiratory disease in pigs and acute/febrile encephalitis in humans with high mortality.

    METHODS: A competitive enzyme-linked immunosorbent assay (cELISA) using a monoclonal antibody (mAb) and recombinant NiV glycoprotein (G) was developed and laboratory evaluated using sera from experimental pigs, mini pigs and nonhuman primates. The test depends on competition between specific antibodies in positive sera and a virus-specific mAb for binding to NiV-G.

    RESULTS: Based on 1,199 negative and 71 NiV positive serum test results, the cutoff value was determined as 35% inhibition. The diagnostic sensitivity and specificity of the NiV cELISA was 98.58 and 99.92%, respectively. When testing sera from animals experimentally infected with NiV Malaysia, the cELISA detected antibodies from 14 days post-infection (dpi) and remained positive until the end of the experiment (28 dpi). Comparisons using the Kappa coefficient showed strong agreement (100%) between the cELISA and a plaque reduction neutralization test (PRNT).

    DISCUSSION: Because our cELISA is simpler, faster, and gives comparable or better results than PRNT, it would be an adequate screening test for suspect NiV and HeV cases, and it would also be useful for epidemiological surveillance of Henipavirus infections in different animal species without changing reagents.

  3. Griffin BD, Leung A, Chan M, Warner BM, Ranadheera C, Tierney K, et al.
    Sci Rep, 2019 08 01;9(1):11171.
    PMID: 31371748 DOI: 10.1038/s41598-019-47549-y
    Nipah virus (NiV) has emerged as a highly lethal zoonotic paramyxovirus that is capable of causing a febrile encephalitis and/or respiratory disease in humans for which no vaccines or licensed treatments are currently available. There are two genetically and geographically distinct lineages of NiV: NiV-Malaysia (NiV-M), the strain that caused the initial outbreak in Malaysia, and NiV-Bangladesh (NiV-B), the strain that has been implicated in subsequent outbreaks in India and Bangladesh. NiV-B appears to be both more lethal and have a greater propensity for person-to-person transmission than NiV-M. Here we describe the generation and characterization of stable RNA polymerase II-driven infectious cDNA clones of NiV-M and NiV-B. In vitro, reverse genetics-derived NiV-M and NiV-B were indistinguishable from a wildtype isolate of NiV-M, and both viruses were pathogenic in the Syrian hamster model of NiV infection. We also describe recombinant NiV-M and NiV-B with enhanced green fluorescent protein (EGFP) inserted between the G and L genes that enable rapid and sensitive detection of NiV infection in vitro. This panel of molecular clones will enable studies to investigate the virologic determinants of henipavirus pathogenesis, including the pathogenic differences between NiV-M and NiV-B, and the high-throughput screening of candidate therapeutics.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links