Displaying all 6 publications

Abstract:
Sort:
  1. Kamei KI, Mashimo Y, Yoshioka M, Tokunaga Y, Fockenberg C, Terada S, et al.
    Small, 2017 05;13(18).
    PMID: 28272774 DOI: 10.1002/smll.201603104
    Cellular microenvironments are generally sophisticated, but crucial for regulating the functions of human pluripotent stem cells (hPSCs). Despite tremendous effort in this field, the correlation between the environmental factors-especially the extracellular matrix and soluble cell factors-and the desired cellular functions remains largely unknown because of the lack of appropriate tools to recapitulate in vivo conditions and/or simultaneously evaluate the interplay of different environment factors. Here, a combinatorial platform is developed with integrated microfluidic channels and nanofibers, associated with a method of high-content single-cell analysis, to study the effects of environmental factors on stem cell phenotype. Particular attention is paid to the dependence of hPSC short-term self-renewal on the density and composition of extracellular matrices and initial cell seeding densities. Thus, this combinatorial approach provides insights into the underlying chemical and physical mechanisms that govern stem cell fate decisions.
  2. Sil BK, Jamiruddin MR, Haq MA, Khondoker MU, Jahan N, Khandker SS, et al.
    Int J Nanomedicine, 2021;16:4739-4753.
    PMID: 34267520 DOI: 10.2147/IJN.S313140
    BACKGROUND: Serological tests detecting severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) are widely used in seroprevalence studies and evaluating the efficacy of the vaccination program. Some of the widely used serological testing techniques are enzyme-linked immune-sorbent assay (ELISA), chemiluminescence immunoassay (CLIA), and lateral flow immunoassay (LFIA). However, these tests are plagued with low sensitivity or specificity, time-consuming, labor-intensive, and expensive. We developed a serological test implementing flow-through dot-blot assay (FT-DBA) for SARS-CoV-2 specific IgG detection, which provides enhanced sensitivity and specificity while being quick to perform and easy to use.

    METHODS: SARS-CoV-2 antigens were immobilized on nitrocellulose membrane to capture human IgG, which was then detected with anti-human IgG conjugated gold nanoparticle (hIgG-AuNP). A total of 181 samples were analyzed in-house. Within which 35 were further evaluated in US FDA-approved CLIA Elecsys SARS-CoV-2 assay. The positive panel consisted of RT-qPCR positive samples from patients with both <14 days and >14 days from the onset of clinical symptoms. The negative panel contained samples collected from the pre-pandemic era dengue patients and healthy donors during the pandemic. Moreover, the sensitivity, specificity, positive predictive value (PPV), and negative predictive value (NPV) of FT-DBA were evaluated against RT-qPCR positive sera. However, the overall efficacies were assessed with sera that seroconverted against either nucleocapsid (NCP) or receptor-binding domain (RBD).

    RESULTS: In-house ELISA selected a total of 81 true seropositive and 100 seronegative samples. The sensitivity of samples with <14 days using FT-DBA was 94.7%, increasing to 100% for samples >14 days. The overall detection sensitivity and specificity were 98.8% and 98%, respectively, whereas the overall PPV and NPV were 99.6% and 99%. Moreover, comparative analysis between in-house ELISA assays and FT-DBA revealed clinical agreement of Cohen's Kappa value of 0.944. The FT-DBA showed sensitivity and specificity of 100% when compared with commercial CLIA kits.

    CONCLUSION: The assay can confirm past SARS-CoV-2 infection with high accuracy within 2 minutes compared to commercial CLIA or in-house ELISA. It can help track SARS-CoV-2 disease progression, population screening, and vaccination response. The ease of use of the assay without requiring any instruments while being semi-quantitative provides the avenue of its implementation in remote areas around the globe, where conventional serodiagnosis is not feasible.

  3. Jamiruddin MR, Haq MA, Tomizawa K, Kobatake E, Mie M, Ahmed S, et al.
    J Inflamm Res, 2021;14:2497-2506.
    PMID: 34163208 DOI: 10.2147/JIR.S313188
    BACKGROUND: Dynamics and persistence of neutralizing and non-neutralizing antibodies can give us the knowledge required for serodiagnosis, disease management, and successful vaccine design and development. The disappearance of antibodies, absence of humoral immunity activation, and sporadic reinfection cases emphasize the importance of longitudinal antibody dynamics against variable structural antigens.

    METHODS: In this study, twenty-five healthy subjects working in a SARS-COV-2 serodiagnostic assay development project were enrolled, and their sign and symptoms were followed up to six months. Three subjects showed COVID-19-like symptoms, and three subjects' antibody dynamics were followed over 120 days by analyzing 516 samples. We have developed 12 different types of in-house ELISAs to observe the kinetics of IgG, IgM, and IgA against four SARS-CoV-2 proteins, namely nucleocapsid, RBD, S1, and whole spike (S1+S2). For the development of these assays, 30-104 pre-pandemic samples were taken as negative controls and 83 RT-qPCR positive samples as positive ones.

    RESULTS: All three subjects presented COVID-19-like symptoms twice, with mild symptoms in the first episode were severe in the second, and RT-qPCR confirmed the latter. The initial episode did not culminate with any significant antibody development, while a multifold increase in IgG antibodies characterized the second episode. Interestingly, IgG antibody development concurrent with IgM and IgA and persisted, whereas the latter two weans off rather quickly if appeared.

    CONCLUSION: Antibody kinetics observed in this study can provide a pathway to the successful development of sero-diagnostics and epidemiologists to predict the fate of vaccination currently in place.

  4. Mashimo Y, Yoshioka M, Tokunaga Y, Fockenberg C, Terada S, Koyama Y, et al.
    J Vis Exp, 2018 09 07.
    PMID: 30247461 DOI: 10.3791/57377
    Cellular microenvironments consist of a variety of cues, such as growth factors, extracellular matrices, and intercellular interactions. These cues are well orchestrated and are crucial in regulating cell functions in a living system. Although a number of researchers have attempted to investigate the correlation between environmental factors and desired cellular functions, much remains unknown. This is largely due to the lack of a proper methodology to mimic such environmental cues in vitro, and simultaneously test different environmental cues on cells. Here, we report an integrated platform of microfluidic channels and a nanofiber array, followed by high-content single-cell analysis, to examine stem cell phenotypes altered by distinct environmental factors. To demonstrate the application of this platform, this study focuses on the phenotypes of self-renewing human pluripotent stem cells (hPSCs). Here, we present the preparation procedures for a nanofiber array and the microfluidic structure in the fabrication of a Multiplexed Artificial Cellular MicroEnvironment (MACME) array. Moreover, overall steps of the single-cell profiling, cell staining with multiple fluorescent markers, multiple fluorescence imaging, and statistical analyses, are described.
  5. Adnan N, Khandker SS, Haq A, Chaity MA, Khalek A, Nazim AQ, et al.
    PMID: 34477019 DOI: 10.1080/14787210.2021.1976144
    BACKGROUND: Rapid increase in COVID-19 suspected cases has rendered disease diagnosis challenging, mainly depending upon RT-qPCR. Reliable, rapid, and cost-effective diagnostic assays that complement RT-qPCR should be introduced after thoroughly evaluating their performance upon various disease phases, viral load, and sample storage conditions.

    OBJECTIVE: We investigated the correlation of cycle threshold (Ct) value, which implies the viral load and infection phase, and the storage condition of the clinical specimen with the diagnosis of SARS-CoV-2 through our newly developed in-house rapid enzyme-linked immunosorbent assay (ELISA) system.

    METHOD: Naso-oropharyngeal samples of 339 COVID-19 suspected cases were collected and evaluated through RT-qPCR that were stored up to 30 days in different conditions (i.e. -80°C, -20°C and initially at 4°C followed by -80°C). The clinical specimens were evaluated with our in-house ELISA system after finalizing the assay method through checkerboard assay and minimizing the signal/noise ratio.

    RESULT: The ELISA system showed the highest sensitivity (92.9%) for samples with Ct ≤30 and preserving at -80°C temperature. The sensitivity reduced proportionally with increasing Ct value and preserving temperature. However, the specificity ranged between 98.3% and 100%.

    CONCLUSION: The results indicate the necessity of early infection phase diagnosis and lower temperature preservation of samples to perform rapid antigen ELISA tests.

  6. Jamiruddin R, Haq A, Khondoker MU, Ali T, Ahmed F, Khandker SS, et al.
    Expert Rev Vaccines, 2021 12;20(12):1651-1660.
    PMID: 34503369 DOI: 10.1080/14760584.2021.1977630
    BACKGROUND: Vaccination with the Oxford-AstraZeneca COVID-19 vaccine (AZD1222) initially started in the UK and quickly implemented around the Globe, including Bangladesh. Up to date, more than nine million doses administrated to the Bangladeshi public.

    METHOD: Herein, we studied the antibody response to the first dose of AZD1222 in 86 Bangladeshi individuals using in-house ELISA kits. Study subjects were categorized into two groups, convalescent and uninfected, based on prior infection history and SARS-CoV-2 nucleocapsid-IgG profiles.

    RESULTS: All the convalescent individuals presented elevated spike-1-IgG compared to 90% of uninfected ones after the first dose. Day >28 post-vaccination, the convalescent group showed six times higher antibody titer than the uninfected ones. The most elevated antibody titers for the former and later group were found at Day 14 and Days >28 post-vaccination, respectively. The spike-1-IgA titer showed a similar pattern as spike-1-IgG, although in a low-titer. In contrast, the IgM titer did not show any significant change in either group.

    CONCLUSION: High antibody titer in the convalescent group, signify the importance of the first dose among the uninfected group. This study advocates the integration of antibody tests in vaccination programs in the healthcare system for maximizing benefit.

Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links