Displaying all 2 publications

Abstract:
Sort:
  1. Ng KK, Motoda Y, Watanabe S, Sofiman Othman A, Kigawa T, Kodama Y, et al.
    PLoS One, 2016;11(4):e0154081.
    PMID: 27100681 DOI: 10.1371/journal.pone.0154081
    In current plant biotechnology, the introduction of exogenous DNA encoding desired traits is the most common approach used to modify plants. However, general plant transformation methods can cause random integration of exogenous DNA into the plant genome. To avoid these events, alternative methods, such as a direct protein delivery system, are needed to modify the plant. Although there have been reports of the delivery of proteins into cultured plant cells, there are currently no methods for the direct delivery of proteins into intact plants, owing to their hierarchical structures. Here, we demonstrate the efficient fusion-peptide-based delivery of proteins into intact Arabidopsis thaliana. Bovine serum albumin (BSA, 66 kDa) was selected as a model protein to optimize conditions for delivery into the cytosol. The general applicability of our method to large protein cargo was also demonstrated by the delivery of alcohol dehydrogenase (ADH, 150 kDa) into the cytosol. The compatibility of the fusion peptide system with the delivery of proteins to specific cellular organelles was also demonstrated using the fluorescent protein Citrine (27 kDa) conjugated to either a nuclear localization signal (NLS) or a peroxisomal targeting signal (PTS). In conclusion, our designed fusion peptide system can deliver proteins with a wide range of molecular weights (27 to 150 kDa) into the cells of intact A. thaliana without interfering with the organelle-targeting peptide conjugated to the protein. We expect that this efficient protein delivery system will be a powerful tool in plant biotechnology.
  2. Iwatate M, Hirata D, Francisco CPD, Co JT, Byeon JS, Joshi N, et al.
    Dig Endosc, 2022 Feb 04.
    PMID: 35122323 DOI: 10.1111/den.14244
    OBJECTIVE: Three high-risk flat and depressed lesions (FDLs), laterally spreading tumors non-granular type (LST-NG), depressed lesions, and large sessile serrated lesions (SSLs), are highly attributable to post-colonoscopy colorectal cancer (CRC). Efficient and organized educational programs on detecting high-risk FDLs are lacking. We aimed to explore whether a web-based educational intervention with training on FIND clues (fold deformation, intensive stool/mucus attachment, no vessel visibility, and demarcated reddish area) may improve the ability to detect high-risk FDLs.

    METHODS: This was an international web-based randomized control trial that enrolled non-expert endoscopists in 13 Asian countries. The participants were randomized into either education or non-education group. All participants took the pre-test and post-test to read 60 endoscopic images (40 high-risk FDL, 5 polypoid, 15 no lesions) and answered whether there was a lesion. Only the education group received a self-education program (video and training questions and answers) between the tests. The primary outcome was a detection rate of high-risk FDLs.

    RESULTS: In total, 284 participants were randomized. After excluding non-responders, the final data analyses were based on 139 participants in the education group and 130 in the non-education group. The detection rate of high-risk FDLs in the education group significantly improved by 14.7% (66.6% to 81.3%) compared with -0.8% (70.8% to 70.0%) in the non-education group. Similarly, the detection rate of LST-NG, depressed lesions, and large SSLs significantly increased only in the education group by 12.7%, 12.0%, and 21.6%, respectively.

    CONCLUSION: Short self-education focusing on detecting high-risk FDLs was effective for Asian non-expert endoscopists. (UMIN000042348).

Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links