Displaying all 2 publications

Abstract:
Sort:
  1. Mohd Tamam MQ, Omi MRT, Yahya WJ, Ithnin AM, Abdul Rahman H, Rahman MM, et al.
    Sci Rep, 2023 Jun 30;13(1):10599.
    PMID: 37391435 DOI: 10.1038/s41598-023-37662-4
    Malaysia is one of the top exporters of palm oil, and although currently facing fierce resistance towards palm oil imports in some parts of the globe, one of the ways to utilize this commodity is by increasing palm biodiesel content in local commercial diesel. However, due to the oxygen-rich nature of biodiesel, its utilization suffers from increased nitrogen oxides (NOx) emission compared to conventional diesel. To mitigate this issue and improve diesel engine performance and emissions using biodiesel-diesel blends, this study attempted to investigate implementation of a real-time non-surfactant emulsion fuel supply system (RTES) which produces water-in-diesel emulsion as fuel without surfactants. NOx reducing capability of water-in-diesel produced by RTES has been well documented. Therefore, in this study, 30% biodiesel-diesel (B30) was used as the base fuel while B30-derived emulsions consisting of 10 wt%, 15 wt% and 20 wt% water content were supplied into a 100 kVA, 5.9-L common rail turbocharged diesel engine electric generator. Fuel consumption and exhaust emissions were measured and compared with commercially available Malaysian low grade diesel fuel (D2M). Evidence suggested that emulsified B30 biodiesel-diesel produced by RTES was able to increase brake thermal efficiency (BTE) up to a maximum of 36% and reduce brake specific fuel consumption (BSFC) up to 8.70%. Furthermore, B30 biodiesel-diesel emulsions produced significantly less NOx, carbon monoxide and smoke at high engine load. In conclusion, B30 biodiesel-diesel emulsions can be readily utilized in current diesel engines without compromising on performance and emissions.
  2. Minayoshi Y, Maeda H, Yanagisawa H, Hamasaki K, Mizuta Y, Nishida K, et al.
    Drug Deliv, 2018 Nov;25(1):1067-1077.
    PMID: 29688069 DOI: 10.1080/10717544.2018.1464083
    Because of its multifaceted anti-inflammatory and immunomodulatory effects, delivering type-I interferon to Kupffer cells has the potential to function as a novel type of therapy for the treatment of various types of hepatitis. We report herein on the preparation of a Kupffer cell targeting type-I interferon, an albumin-IFNα2b fusion protein that contains highly mannosylated N-linked oligosaccharide chains, Man-HSA(D494N)-IFNα2b, attached by combining albumin fusion technology and site-directed mutagenesis. The presence of this unique oligosaccharide permits the protein to be efficiently, rapidly and preferentially distributed to Kupffer cells. Likewise IFNα2b, Man-HSA(D494N)-IFNα2b caused a significant induction in the mRNA levels of IL-10, IL-1Ra, PD-L1 in RAW264.7 cells and mouse isolated Kupffer cells, and these inductions were largely inhibited by blocking the interferon receptor. These data indicate that Man-HSA(D494N)-IFNα2b retained the biological activities of type-I interferon. Man-HSA(D494N)-IFNα2b significantly inhibited liver injury in Concanavalin A (Con-A)-induced hepatitis model mice, and consequently improved their survival rate. Moreover, the post-administration of Man-HSA(D494N)-IFNα2b at 2 h after the Con-A challenge also exerted hepato-protective effects. In conclusion, this proof-of-concept study demonstrates the therapeutic effectiveness and utility of Kupffer cell targeting type-I interferon against hepatitis via its anti-inflammatory and immunomodulatory actions.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links