Displaying 1 publication

Abstract:
Sort:
  1. Shazmeen Daniar Shamsuddin, Nurlyana Omar, Koh, Meng-Hock
    MATEMATIKA, 2017;33(2):149-157.
    MyJurnal
    It has come to attention that Malaysia have been aiming to build its own
    nuclear power plant (NPP) for electricity generation in 2030 to diversify the national
    energy supply and resources. As part of the regulation to build a NPP, environmental
    risk assessment analysis which includes the atmospheric dispersion assessment has to
    be performed as required by the Malaysian Atomic Energy Licensing Board (AELB)
    prior to the commissioning process. The assessment is to investigate the dispersion of
    radioactive effluent from the NPP in the event of nuclear accident. This article will focus
    on current development of locally developed atmospheric dispersion modeling code
    based on Gaussian Plume model. The code is written in Fortran computer language
    and has been benchmarked to a readily available HotSpot software. The radionuclide
    release rate entering the Gaussian equation is approximated to the value found in the
    Fukushima NPP accident in 2011. Meteorological data of Mersing District, Johor of
    year 2013 is utilized for the calculations. The results show that the dispersion of radionuclide
    effluent can potentially affect areas around Johor Bahru district, Singapore
    and some parts of Riau when the wind direction blows from the North-northeast direction.
    The results from our code was found to be in good agreement with the one
    obtained from HotSpot, with less than 1% discrepancy between the two.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links