Affiliations 

  • 1 Universiti Teknologi Malaysia
MATEMATIKA, 2017;33(2):149-157.
MyJurnal

Abstract

It has come to attention that Malaysia have been aiming to build its own
nuclear power plant (NPP) for electricity generation in 2030 to diversify the national
energy supply and resources. As part of the regulation to build a NPP, environmental
risk assessment analysis which includes the atmospheric dispersion assessment has to
be performed as required by the Malaysian Atomic Energy Licensing Board (AELB)
prior to the commissioning process. The assessment is to investigate the dispersion of
radioactive effluent from the NPP in the event of nuclear accident. This article will focus
on current development of locally developed atmospheric dispersion modeling code
based on Gaussian Plume model. The code is written in Fortran computer language
and has been benchmarked to a readily available HotSpot software. The radionuclide
release rate entering the Gaussian equation is approximated to the value found in the
Fukushima NPP accident in 2011. Meteorological data of Mersing District, Johor of
year 2013 is utilized for the calculations. The results show that the dispersion of radionuclide
effluent can potentially affect areas around Johor Bahru district, Singapore
and some parts of Riau when the wind direction blows from the North-northeast direction.
The results from our code was found to be in good agreement with the one
obtained from HotSpot, with less than 1% discrepancy between the two.