OBJECTIVES: To assess the effectiveness of systematic preconception genetic risk assessment to enable autonomous reproductive choice and to improve reproductive outcomes in women and their partners who are both identified as carriers of thalassaemia, sickle cell disease, cystic fibrosis and Tay-Sachs disease in healthcare settings when compared to usual care.
SEARCH METHODS: We searched the Cochrane Cystic Fibrosis and Genetic Disorders Group's Trials Registers. Date of latest search of the registers: 04 August 2021. In addition, we searched for all relevant trials from 1970 (or the date at which the database was first available if after 1970) to date using electronic databases (MEDLINE, Embase, CINAHL, PsycINFO), clinical trial databases (National Institutes of Health, Clinical Trials Search portal of the World Health Organization, metaRegister of controlled clinical trials), and hand searching of key journals and conference abstract books from 1998 to date (European Journal of Human Genetics, Genetics in Medicine, Journal of Community Genetics). We also searched the reference lists of relevant articles, reviews and guidelines and also contacted subject experts in the field to request any unpublished or other published trials. Date of latest search of all these sources: 25 June 2021. SELECTION CRITERIA: Any randomised controlled trials (RCTs) or quasi-RCTs (published or unpublished) comparing reproductive outcomes of systematic preconception genetic risk assessment for thalassaemia, sickle cell disease, cystic fibrosis and Tay-Sachs disease when compared to usual care.
DATA COLLECTION AND ANALYSIS: We identified 37 papers, describing 22 unique trials which were potentially eligible for inclusion in the review. However, after assessment, we found no RCTs of preconception genetic risk assessment for thalassaemia, sickle cell disease, cystic fibrosis and Tay-Sachs disease.
MAIN RESULTS: No RCTs of preconception genetic risk assessment for thalassaemia, sickle cell disease, cystic fibrosis and Tay-Sachs disease are included. A trial identified earlier has published its results and has subsequently been listed as excluded in this review.
AUTHORS' CONCLUSIONS: As there are no RCTs of preconception genetic risk assessment for thalassaemia, sickle cell disease, cystic fibrosis, or Tay-Sachs disease included in either the earlier or current versions of this review, we recommend considering potential non-RCTs studies (for example prospective cohorts or before-and-after studies) for future reviews. While RCTs are desirable to inform evidence-based practice and robust recommendations, the ethical, legal and social implications associated with using this trial design to evaluate the implementation of preconception genetic risk assessment involving carrier testing and reproductive autonomy must also be considered. In addition, rather than focusing on single gene-by-gene carrier testing for specific autosomal-recessive conditions as the intervention being evaluated, preconception expanded genetic screening should also be included in future searches as this has received much attention in recent years as a more pragmatic strategy. The research evidence for current international policy recommendations is limited to non-randomised studies.
OBJECTIVE: This paper mainly focuses on developing MyAsriGeo, a geospatial drug abuse risk assessment and monitoring dashboard tailored for school students. It introduces innovative functionality, seamlessly orchestrating the assessment of drug abuse usage patterns and risks using multivariate student data.
METHODS: A geospatial drug abuse dashboard for monitoring and analysis was designed and developed in this study based on agile methodology and prototyping. Using focus group and interviews, we first examined and gathered the requirements, feedback, and user approval of the MyAsriGeo dashboard. Experts and stakeholders such as the National Anti-Drugs Agency, police, the Federal Department of Town and Country Planning, school instructors, students, and researchers were among those who responded. A total of 20 specialists were involved in the requirement analysis and acceptance evaluation of the pilot and final version of the dashboard. The evaluation sought to identify various user acceptance aspects, such as ease of use and usefulness, for both the pilot and final versions, and 2 additional factors based on the Post-Study System Usability Questionnaire and Task-Technology Fit models were enlisted to assess the interface quality and dashboard sufficiency for the final version.
RESULTS: The MyAsriGeo geospatial dashboard was designed to meet the needs of all user types, as identified through a requirement gathering process. It includes several key functions, such as a geospatial map that shows the locations of high-risk areas for drug abuse, data on drug abuse among students, tools for assessing the risk of drug abuse in different areas, demographic information, and a self-problem test. It also includes the Alcohol, Smoking, and Substance Involvement Screening Test and its risk assessment to help users understand and interpret the results of student risk. The initial prototype and final version of the dashboard were evaluated by 20 experts, which revealed a significant improvement in the ease of use (P=.047) and usefulness (P=.02) factors and showed a high acceptance mean scores for ease of use (4.2), usefulness (4.46), interface quality (4.29), and sufficiency (4.13).
CONCLUSIONS: The MyAsriGeo geospatial dashboard is useful for monitoring and analyzing drug abuse among school-going youth in Malaysia. It was developed based on the needs of various stakeholders and includes a range of functions. The dashboard was evaluated by a group of experts. Overall, the MyAsriGeo geospatial dashboard is a valuable resource for helping stakeholders understand and respond to the issue of drug abuse among youth.