OBJECTIVE: This paper mainly focuses on developing MyAsriGeo, a geospatial drug abuse risk assessment and monitoring dashboard tailored for school students. It introduces innovative functionality, seamlessly orchestrating the assessment of drug abuse usage patterns and risks using multivariate student data.
METHODS: A geospatial drug abuse dashboard for monitoring and analysis was designed and developed in this study based on agile methodology and prototyping. Using focus group and interviews, we first examined and gathered the requirements, feedback, and user approval of the MyAsriGeo dashboard. Experts and stakeholders such as the National Anti-Drugs Agency, police, the Federal Department of Town and Country Planning, school instructors, students, and researchers were among those who responded. A total of 20 specialists were involved in the requirement analysis and acceptance evaluation of the pilot and final version of the dashboard. The evaluation sought to identify various user acceptance aspects, such as ease of use and usefulness, for both the pilot and final versions, and 2 additional factors based on the Post-Study System Usability Questionnaire and Task-Technology Fit models were enlisted to assess the interface quality and dashboard sufficiency for the final version.
RESULTS: The MyAsriGeo geospatial dashboard was designed to meet the needs of all user types, as identified through a requirement gathering process. It includes several key functions, such as a geospatial map that shows the locations of high-risk areas for drug abuse, data on drug abuse among students, tools for assessing the risk of drug abuse in different areas, demographic information, and a self-problem test. It also includes the Alcohol, Smoking, and Substance Involvement Screening Test and its risk assessment to help users understand and interpret the results of student risk. The initial prototype and final version of the dashboard were evaluated by 20 experts, which revealed a significant improvement in the ease of use (P=.047) and usefulness (P=.02) factors and showed a high acceptance mean scores for ease of use (4.2), usefulness (4.46), interface quality (4.29), and sufficiency (4.13).
CONCLUSIONS: The MyAsriGeo geospatial dashboard is useful for monitoring and analyzing drug abuse among school-going youth in Malaysia. It was developed based on the needs of various stakeholders and includes a range of functions. The dashboard was evaluated by a group of experts. Overall, the MyAsriGeo geospatial dashboard is a valuable resource for helping stakeholders understand and respond to the issue of drug abuse among youth.
METHODS: Using measures of discrimination and calibration, we tested the performance of the NL-IHRS (n=100 475) and FC-IHRS (n=107 863) for predicting incident CVD in a community-based, prospective study across seven geographic regions: South Asia, China, Southeast Asia, Middle East, Europe/North America, South America and Africa. CVD was defined as the composite of cardiovascular death, myocardial infarction, stroke, heart failure or coronary revascularisation.
RESULTS: Mean age of the study population was 50.53 (SD 9.79) years and mean follow-up was 4.89 (SD 2.24) years. The NL-IHRS had moderate to good discrimination for incident CVD across geographic regions (concordance statistic (C-statistic) ranging from 0.64 to 0.74), although recalibration was necessary in all regions, which improved its performance in the overall cohort (increase in C-statistic from 0.69 to 0.72, p<0.001). Regional recalibration was also necessary for the FC-IHRS, which also improved its overall discrimination (increase in C-statistic from 0.71 to 0.74, p<0.001). In 85 078 participants with complete data for both scores, discrimination was only modestly better with the FC-IHRS compared with the NL-IHRS (0.74 vs 0.73, p<0.001).
CONCLUSIONS: External validations of the NL-IHRS and FC-IHRS suggest that regionally recalibrated versions of both can be useful for estimating CVD risk across a diverse range of community-based populations. CVD prediction using a non-laboratory score can provide similar accuracy to laboratory-based methods.
MATERIALS AND METHODS: We analysed retrospective data of chest pain patients presenting to ED HUSM from 1st June 2020 till 31st January 2021 based on the patient's history, ECG findings, risk factors, age and troponin level. The patients were stratified as low risk (MHS and HEAR score of 0-3), intermediate risk (MHS and HEAR score of 4-6), and high risk (MHS of 7-10 and HEAR score of 7-8). The association of the MHS and HEAR score with MACE at 6 weeks' time was evaluated using simple logistic regression.
RESULTS: This study included 147 patients in the MHS analysis and 71 patients in HEAR score analysis. The incident rate of MACE in low, intermediate and high risk was 0%,16.3%, and 34.7%, in the MHS group, and 0%, 3.22%, and 6.66% in HEAR score group. The mean difference between MACE and non-MACE in MHS and HEAR score groups was -2.29 (CI: -3.13,1.44, p<0.001) and -2.51(CI: -5.23, 0.21, p=0.070), respectively. There was no significant association between the incidence rate of MACE with modified HEART score (MHS) and HEAR score groups (p>0.95).
CONCLUSION: HEAR score is not feasible to be used as a risk stratification tool for chest pain patients presenting to ED HUSM in comparison to MHS. Further studies are required to validate the results.
PATIENTS AND METHODS: A total of 7476 patients with routine health check-up data who underwent prostate biopsies from January 2008 to December 2021 in eight referral centres in Asia were screened. After data pre-processing and cleaning, 5037 patients and 117 features were analyzed. Seven AI-based algorithms were tested for feature selection and seven AI-based algorithms were tested for classification, with the best combination applied for model construction. The APAC score was established in the CH cohort and validated in a multi-centre cohort and in each validation cohort to evaluate its generalizability in different Asian regions. The performance of the models was evaluated using area under the receiver operating characteristic curve (ROC), calibration plot, and decision curve analyses.
RESULTS: Eighteen features were involved in the APCA score predicting HGPCa, with some of these markers not previously used in prostate cancer diagnosis. The area under the curve (AUC) was 0.76 (95% CI:0.74-0.78) in the multi-centre validation cohort and the increment of AUC (APCA vs. PSA) was 0.16 (95% CI:0.13-0.20). The calibration plots yielded a high degree of coherence and the decision curve analysis yielded a higher net clinical benefit. Applying the APCA score could reduce unnecessary biopsies by 20.2% and 38.4%, at the risk of missing 5.0% and 10.0% of HGPCa cases in the multi-centre validation cohort, respectively.
CONCLUSIONS: The APCA score based on routine health check-ups could reduce unnecessary prostate biopsies without additional examinations in Asian populations. Further prospective population-based studies are warranted to confirm these results.
METHODS: GHS classification for reproductive toxicity of 157 UOG-related chemicals identified as potential reproductive or developmental toxicants in a previous publication was assessed using eleven governmental regulatory agency databases. If there was discordance in classifications across agencies, the most stringent classification was assigned. Chemicals in the category of known or presumed human reproductive toxicants were further evaluated for carcinogenicity and germ cell mutagenicity based on government classifications. A scoring system was utilized to assign numerical values for reproductive health, cancer and germ cell mutation hazard endpoints. Using a Cytoscape analysis, both qualitative and quantitative results were presented visually to readily identify high priority UOG chemicals with evidence of multiple adverse effects.
RESULTS: We observed substantial inconsistencies in classification among the 11 databases. By adopting the most stringent classification within and across countries, 43 chemicals were classified as known or presumed human reproductive toxicants (GHS Category 1), while 31 chemicals were classified as suspected human reproductive toxicants (GHS Category 2). The 43 reproductive toxicants were further subjected to analysis for carcinogenic and mutagenic properties. Calculated hazard scores and Cytoscape visualization yielded several high priority chemicals including potassium dichromate, cadmium, benzene and ethylene oxide.
CONCLUSIONS: Our findings reveal diverging GHS classification outcomes for UOG chemicals across regulatory agencies. Adoption of the most stringent classification with application of hazard scores provides a useful approach to prioritize reproductive toxicants in UOG and other industries for exposure assessments and selection of safer alternatives.
METHODS AND ANALYSIS: Hip fracture Accelerated surgical TreaTment And Care tracK (HIP ATTACK) is a multicentre, international, parallel-group randomised controlled trial (RCT). Patients who suffer a hip fracture are randomly allocated to either accelerated medical assessment and surgical repair with a goal of surgery within 6 hours of diagnosis or standard care where a repair typically occurs 24 to 48 hours after diagnosis. The primary outcome of this substudy is the development of AKI within 7 days of randomisation. We anticipate at least 1998 patients will participate in this substudy.
ETHICS AND DISSEMINATION: We obtained ethics approval for additional serum creatinine recordings in consecutive patients enrolled at 70 participating centres. All patients provide consent before randomisation. We anticipate reporting substudy results by 2021.
TRIAL REGISTRATION NUMBER: NCT02027896; Pre-results.
METHODS AND ANALYSIS: The measurement challenge has been established as an international resource to offer a common set of anonymised mammogram images for measurement and analysis. To date, full field digital mammogram images and core data from 1650 cases and 1929 controls from five countries have been collated. The measurement challenge is an ongoing collaboration and we are continuing to expand the resource to include additional image sets across different populations (from contributors) and to compare additional measurement methods (by challengers). The intended use of the measurement challenge resource is for refinement and validation of new and existing mammographic measurement methods. The measurement challenge resource provides a standardised dataset of mammographic images and core data that enables investigators to directly compare methods of measuring mammographic density or other mammographic features in case/control sets of both raw and processed images, for the purposes of the comparing their predictions of breast cancer risk.
ETHICS AND DISSEMINATION: Challengers and contributors are required to enter a Research Collaboration Agreement with the University of Melbourne prior to participation in the measurement challenge. The Challenge database of collated data and images are stored in a secure data repository at the University of Melbourne. Ethics approval for the measurement challenge is held at University of Melbourne (HREC ID 0931343.3).
METHODS: The VISION Study included 40,004 noncardiac surgery patients with postoperative troponin measurements. Among them, 1,806 patients had both fourth-generation non-hsTnT and fifth-generation hsTnT concomitant measurements (4,451 paired results). We compared the absolute concentrations, the timing, and the impact of different thresholds on predicting 30-day major cardiovascular complications (composite of death, nonfatal cardiac arrest, coronary revascularization, and congestive heart failure).
RESULTS: Based on the manufacturers' threshold of 14 ng/L, 580 (32.1%) patients had postoperative hsTnT concentrations greater than the threshold, while their non-hsTnT concentrations were below the manufacturer's threshold. These 580 patients had higher risk of major cardiovascular events (OR 2.33; CI 95% 1.04-5.23; P = .049) than patients with hsTnT concentrations below the manufacturer threshold. Among patients with myocardial injury after noncardiac surgery, only 50% would be detected by the fourth-generation non-hsTnT assay at 6 to 12 hours postoperative as compared to 85% with the fifth-generation hsTnT assay (P-value < .001).
CONCLUSIONS: Within the first 3 postoperative days, fifth-generation hsTnT identified at least 1 in 3 patients with troponin elevation that would have gone undetected by fourth-generation non-hsTnT using published thresholds in this setting. Furthermore, fifth-generation hsTnT identified patients with an elevation earlier than fourth-generation non-hsTnT, indicating potential to improve postoperative risk stratification.
OBJECTIVES: The objectives of this study were to evaluate whether a 1-time measurement of non-HDL-C or LDL-C in a young adult can predict cumulative exposure to these lipids during early adulthood, and to quantify the association between cumulative exposure to non-HDL-C or LDL-C during early adulthood and the risk of ASCVD after age 40 years.
METHODS: We included CARDIA (Coronary Artery Risk Development in Young Adults Study) participants who were free of cardiovascular disease before age 40 years, were not taking lipid-lowering medications, and had ≥3 measurements of LDL-C and non-HDL-C before age 40 years. First, we assessed the ability of a 1-time measurement of LDL-C or non-HDL-C obtained between age 18 and 30 years to predict the quartile of cumulative lipid exposure from ages 18 to 40 years. Second, we assessed the associations between quartiles of cumulative lipid exposure from ages 18 to 40 years with ASCVD events (fatal and nonfatal myocardial infarction and stroke) after age 40 years.
RESULTS: Of 4,104 CARDIA participants who had multiple lipid measurements before and after age 30 years, 3,995 participants met our inclusion criteria and were in the final analysis set. A 1-time measure of non-HDL-C and LDL-C had excellent discrimination for predicting membership in the top or bottom quartiles of cumulative exposure (AUC: 0.93 for the 4 models). The absolute values of non-HDL-C and LDL-C that predicted membership in the top quartiles with the highest simultaneous sensitivity and specificity (highest Youden's Index) were >135 mg/dL for non-HDL-C and >118 mg/dL for LDL-C; the values that predicted membership in the bottom quartiles were <107 mg/dL for non-HDL-C and <96 mg/dL for LDL-C. Individuals in the top quartile of non-HDL-C and LDL-C exposure had demographic-adjusted HRs of 4.6 (95% CI: 2.84-7.29) and 4.0 (95% CI: 2.50-6.33) for ASCVD events after age 40 years, respectively, when compared with each bottom quartile.
CONCLUSIONS: Single measures of non-HDL-C and LDL-C obtained between ages 18 and 30 years are highly predictive of cumulative exposure before age 40 years, which in turn strongly predicts later-life ASCVD events.