Displaying publications 1 - 20 of 35 in total

Abstract:
Sort:
  1. Raaschou-Nielsen O, Beelen R, Wang M, Hoek G, Andersen ZJ, Hoffmann B, et al.
    Environ Int, 2016 Feb;87:66-73.
    PMID: 26641521 DOI: 10.1016/j.envint.2015.11.007
    Particulate matter (PM) air pollution is a human lung carcinogen; however, the components responsible have not been identified. We assessed the associations between PM components and lung cancer incidence.
  2. Aris AZ, Shamsuddin AS, Praveena SM
    Environ Int, 2014 Aug;69:104-19.
    PMID: 24825791 DOI: 10.1016/j.envint.2014.04.011
    17α-ethynylestradiol (EE2) is a synthetic hormone, which is a derivative of the natural hormone, estradiol (E2). EE2 is an orally bio-active estrogen, and is one of the most commonly used medications for humans as well as livestock and aquaculture activity. EE2 has become a widespread problem in the environment due to its high resistance to the process of degradation and its tendency to (i) absorb organic matter, (ii) accumulate in sediment and (iii) concentrate in biota. Numerous studies have reported the ability of EE2 to alter sex determination, delay sexual maturity, and decrease the secondary sexual characteristics of exposed organisms even at a low concentration (ng/L) by mimicking its natural analogue, 17β-estradiol (E2). Thus, the aim of this review is to provide an overview of the science regarding EE2, the concentration levels in the environment (water, sediment and biota) and summarize the effects of this compound on exposed biota at various concentrations, stage life, sex, and species. The challenges in respect of EE2 include the extension of the limited database on the EE2 pollution profile in the environment, its fate and transport mechanism, as well as the exposure level of EE2 for better prediction and definition revision of EE2 toxicity end points, notably for the purpose of environmental risk assessment.
  3. Biswas B, Sarkar B, Rusmin R, Naidu R
    Environ Int, 2015 Dec;85:168-81.
    PMID: 26408945 DOI: 10.1016/j.envint.2015.09.017
    Bioremediation is an effective strategy for cleaning up organic contaminants, such as polycyclic aromatic hydrocarbons (PAHs) and volatile organic compounds (VOCs). Advanced bioremediation implies that biotic agents are more efficient in degrading the contaminants completely. Bioremediation by microbial degradation is often employed and to make this process efficient, natural and cost-effective materials can serve as supportive matrices. Clay/modified clay minerals are effective adsorbents of PAHs/VOCs, and readily available substrate and habitat for microorganisms in the natural soil and sediment. However, the mechanism underpinning clay-mediated biodegradation of organic compounds is often unclear, and this requires critical investigation. This review describes the role of clay/modified clay minerals in hydrocarbon bioremediation through interaction with microbial agents in specific scenarios. The vision is on a faster, more efficient and cost-effective bioremediation technique using clay-based products. This review also proposes future research directions in the field of clay modulated microbial degradation of hydrocarbons.
  4. Aliyu AS, Evangeliou N, Mousseau TA, Wu J, Ramli AT
    Environ Int, 2015 Dec;85:213-28.
    PMID: 26425805 DOI: 10.1016/j.envint.2015.09.020
    Since 2011, the scientific community has worked to identify the exact transport and deposition patterns of radionuclides released from the accident at the Fukushima Daiichi Nuclear Power Plant (FDNPP) in Japan. Nevertheless, there still remain many unknowns concerning the health and environmental impacts of these radionuclides. The present paper reviews the current understanding of the FDNPP accident with respect to interactions of the released radionuclides with the environment and impacts on human and non-human biota. Here, we scrutinize existing literature and combine and interpret observations and modeling assessments derived after Fukushima. Finally, we discuss the behavior and applications of radionuclides that might be used as tracers of environmental processes. This review focuses on (137)Cs and (131)I releases derived from Fukushima. Published estimates suggest total release amounts of 12-36.7PBq of (137)Cs and 150-160PBq of (131)I. Maximum estimated human mortality due to the Fukushima nuclear accident is 10,000 (due to all causes) and the maximum estimates for lifetime cancer mortality and morbidity are 1500 and 1800, respectively. Studies of plants and animals in the forests of Fukushima have recorded a range of physiological, developmental, morphological, and behavioral consequences of exposure to radioactivity. Some of the effects observed in the exposed populations include the following: hematological aberrations in Fukushima monkeys; genetic, developmental and morphological aberrations in a butterfly; declines in abundances of birds, butterflies and cicadas; aberrant growth forms in trees; and morphological abnormalities in aphids. These findings are discussed from the perspective of conservation biology.
  5. Chapman R, Howden-Chapman P, Capon A
    Environ Int, 2016 Sep;94:380-387.
    PMID: 27126780 DOI: 10.1016/j.envint.2016.04.014
    Understanding cities comprehensively as systems is a costly challenge and is typically not feasible for policy makers. Nevertheless, focusing on some key systemic characteristics of cities can give useful insights for policy to advance health and well-being outcomes. Moreover, if we take a coevolutionary systems view of cities, some conventional assumptions about the nature of urban development (e.g. the growth in private vehicle use with income) may not stand up. We illustrate this by examining the coevolution of urban transport and land use systems, and institutional change, giving examples of policy implications. At a high level, our concern derives from the need to better understand the dynamics of urban change, and its implications for health and well-being. At a practical level, we see opportunities to use stylised findings about urban systems to underpin policy experiments. While it is now not uncommon to view cities as systems, policy makers appear to have made little use so far of a systems approach to inform choice of policies with consequences for health and well-being. System insights can be applied to intelligently anticipate change - for example, as cities are subjected to increasing natural system reactions to climate change, they must find ways to mitigate and adapt to it. Secondly, systems insights around policy cobenefits are vital for better informing horizontal policy integration. Lastly, an implication of system complexity is that rather than seeking detailed, 'full' knowledge about urban issues and policies, cities would be well advised to engage in policy experimentation to address increasingly urgent health and climate change issues.
  6. Yap CK, Ismail A, Tan SG, Omar H
    Environ Int, 2002 Apr;28(1-2):117-26.
    PMID: 12046948
    Total concentrations and speciation of cadmium (Cd), copper (Cu), lead (Pb) and zinc (Zn) in surface sediment samples were correlated with the respective metal measured in the total soft tissue of the green-lipped mussel Perna viridis, collected from water off the west coast of Peninsular Malaysia. The aim of this study is to relate the possible differences in the accumulation patterns of the heavy metals in P. viridis to those in the surface sediment. The sequential extraction technique was employed to fractionate the sediment into 'freely leachable and exchangeable' (EFLE), 'acid-reducible,' 'oxidisable-organic' and 'resistant' fractions. The results showed that significant (P .05) was found between Zn in P viridis and all the sediment geochemical fractions of Zn and total Zn in the sediment. This indicated that Zn was possibly regulated from the soft tissue of P. viridis. The present results supported the use of P viridis as a suitable biomonitoring agent for Cd, Cu and Pb.
  7. Yap CK, Ismail A, Tan SG
    Environ Int, 2003 Jul;29(4):521-8.
    PMID: 12705949
    Concentrations of cadmium (Cd), lead (Pb) and zinc (Zn) in total soft tissues (ST) and byssus (BYS) of the green-lipped mussel Perna viridis from 11 different geographical locations off the west coast of Peninsular Malaysia were determined. The metal concentrations distributed between the BYS and ST were compared. The results of this study indicated that higher levels of Cd (1.31 microg/g), Pb (38.49 microg/g) and Zn (206.52 microg/g) were accumulated in the BYS than in the total ST (Cd: 0.29 microg/g; Pb: 8.27 microg/g; Zn: 102.6 microg/g). Semi-static and short period controlled laboratory experiments were also conducted for the accumulation and depuration of Cd, Pb and Zn in the total ST and BYS of P. viridis. The ratios (BYS/ST) for Pb and Cd from the laboratory experiments showed that the total ST accumulated more metals than the BYS. Therefore, these laboratory results disagreed with those found for the field samples. However, the laboratory results for the Zn ratio (BYS/ST) agreed with those of the field samples. It was evident that when compared to the ST, the BYS was a more sensitive biomonitoring organ for Zn while it could be a complementary organ for Cd and Pb in the total ST. Since total ST of P. viridis had been reported to have regulative mechanism for Zn, its BYS can be used as a biomonitoring organ for the identification of coastal areas exposed to Zn pollution.
  8. Aziz HA, Othman N, Yusuff MS, Basri DR, Ashaari FA, Adlan MN, et al.
    Environ Int, 2001 May;26(5-6):395-9.
    PMID: 11392757
    This paper discusses heavy metal removal from wastewater by batch study and filtration technique through low-cost coarse media. Batch study has indicated that more than 90% copper (Cu) with concentration up to 50 mg/l could be removed from the solution with limestone quantity above 20 ml (equivalent to 56 g), which indicates the importance of limestone media in the removal process. This indicates that the removal of Cu is influenced by the media and not solely by the pH. Batch experiments using limestone and activated carbon indicate that both limestone and activated carbon had similar metal-removal efficiency (about 95%). Results of the laboratory-scale filtration technique using limestone particles indicated that above 90% removal of Cu was achieved at retention time of 2.31 h, surface-loading rate of 4.07 m3/m2 per day and Cu loading of 0.02 kg/m3 per day. Analyses of the limestone media after filtration indicated that adsorption and absorption processes were among the mechanisms involved in the removal processes. This study indicated that limestone can be used as an alternative to replace activated carbon.
  9. Shutes RB
    Environ Int, 2001 May;26(5-6):441-7.
    PMID: 11392764
    This paper illustrates the role of plants to assist the treatment of water pollution in man-made wetlands in tropical and temperate climates. It also considers the potential for environmental education of these wetland systems. The management and natural treatment of pollution is described in the Mai Po Marshes, Hong Kong and a wetland in London which is also an important site for birds. The design of the Putrajaya Lake and Wetland system in Malaysia is compared with a constructed wetland and lake for the treatment of urban surface runoff in a new residential development in the United Kingdom. The benefits of these natural systems are discussed in the context of the global trend for introducing sustainable methods of environmental management and low cost pollution treatment systems.
  10. Lim PE, Wong TF, Lim DV
    Environ Int, 2001 May;26(5-6):425-31.
    PMID: 11392762
    This study was conducted to: (1) assess the role of wetland vegetation in the removal of oxygen demand and nitrogen under tropical conditions, (2) estimate the uptake of nitrogen and copper by wetland plants and (3) investigate the speciation of Cu in wetland media among four operationally defined host fractions, namely exchangeable, carbonate, reducible and organically bound. Four laboratory-scale wetland units, two free-water-surface (FWS) and two subsurface-flow (SF) with one of each planted with cattails (Typha augustifolia), were fed with primary-treated sewage and operated at nominal retention times of 0.6-7 days. The influent and effluent BOD/COD and nitrogen concentrations were monitored to assess the performance of the wetland units for various mass loading rates. At the end of the study, all cattail plants were harvested and analyzed for total Kjeldahl nitrogen (TKN). Four other wetland units, which were identical to the first four, were fed with domestic wastewater spiked with copper in increasing concentrations. Copper speciation patterns in the sand layer were determined at the end of the study. The results showed that wetland vegetation did not play an important role in oxygen demand removal but were capable of removing about 22% and 26% of the nitrogen input in the FWS and SF wetland units, respectively. Mass balance analysis indicated that less than 1% of copper introduced was taken up by the cattails. Copper speciation patterns in the sand media showed that the exchangeable fraction contributed 30-57% and 63-80% of the nonresidual copper in the planted and unplanted FWS wetlands, respectively. For SF units, the percentages were 52-62% and 59-67%, respectively. This indicates that large amount of copper in the media were potentially remobilizable.
  11. Yap CK, Ismail A, Tan SG, Omar H
    Environ Int, 2002 Dec;28(6):467-79.
    PMID: 12503912
    Malaysia is now a developing country and on her way towards being an industrialised one by the year 2020. Most of her industries and urban areas are located on the west coast of Peninsular Malaysia. In addition, the offshore area of the west coast is now one of the busiest shipping lanes in the world. These two phenomena make the intertidal and offshore areas of the west coast of Peninsular Malaysia interesting for scientific studies. Therefore, this study focused on both the offshore and intertidal sediments of the west coast of Peninsular Malaysia. Sampling for sediment samples were done from the northern to the southern ends of the peninsula and these sediment samples were analysed for Cu and Pb. It was found that total Cu concentrations ranged from 0.25 to 13.8 and 0.40 to 315 microg/g dry weight (dw) for offshore and intertidal sediments, respectively. For Pb, it ranged from 3.59 to 25.4 and 0.96 to 69.8 microg/g dw for the offshore and intertidal sediments, respectively. The ranges of Cu and Pb found from the west coast of Peninsular Malaysia were low in comparison to regional data. However, some intertidal areas were identified as receiving anthropogenic Cu and Pb. Geochemical studies revealed that the 'nonresistant' fraction for Pb contributed about 70.0% to 75.0% and 54.0% of the total Pb concentration in the offshore and intertidal sediments, respectively. As for Cu, the 'nonresistant' fraction contributed about 46.2% to 60.4% and 46.3% of the total Cu concentration in the offshore and intertidal sediments, respectively. The 'nonresistant' fraction contained mostly of anthropogenic metals besides natural origins. These 'nonresistant' percentages indicated that both the offshore and intertidal areas could have received anthropogenic-derived metals, which could be influenced by physico-chemical properties of the sediments. Although the present data indicated that contamination due to Cu and Pb in the west coast of Peninsular Malaysia especially in the offshore areas were not serious, regular biomonitoring studies along the west coast of Peninsular Malaysia are recommended.
  12. Yap CK, Ismail A, Omar H, Tan SG
    Environ Int, 2004 Feb;29(8):1097-104.
    PMID: 14680893
    Studies on toxicities and tolerances of cadmium (Cd), copper (Cu), lead (Pb) and zinc (Zn) in the brown alga Isochrysis galbana and in the green-lipped mussel Perna viridis were conducted by short-term bioassays using endpoints growth production and mortality, respectively. The 5-day EC(50) and 24-h LC(50) of these heavy metals were determined in the brown alga and mussel, respectively. The EC(50) values calculated for the alga were 0.74 mg/l for Cd, 0.91 mg/l for Cu, 1.40 mg/l for Pb and 0.60 mg/l for Zn. The LC(50) values for the mussels were 1.53 mg/l for Cd, 0.25 mg/l for Cu, 4.12 mg/l for Pb and 3.20 mg/l for Zn. These LC(50) values were within the concentration ranges as reported by other authors who used P. viridis as the test organism. Based on these EC(50) and LC(50) values, the alga was most sensitive to Zn, followed by Cd, Cu and Pb while the mussel was most sensitive to Cu, followed by Cd, Zn and Pb. Differences in the trophic levels, metal handling strategies, biology and ecology of the primary producer (brown alga) and the primary consumer (mussel) are believed to be the plausible causes for the different toxicities and tolerances of the metals studied.
  13. Yap CK, Tan SG, Ismail A, Omar H
    Environ Int, 2004 Mar;30(1):39-46.
    PMID: 14664863
    It has been widely reported that heavy metal contamination in coastal waters can modify the allozyme profiles of marine organisms. Previous studies have recorded elevated metal concentrations in sediments and mussel tissues off Peninsular Malaysia. In the present study, horizontal starch gel electrophoresis was carried out to estimate the levels of allelic variation of the green-lipped mussel, Perna viridis, collected from one contaminated and three relatively uncontaminated sites off Peninsular Malaysia. Fourteen polymorphic loci were observed. In addition, the concentrations of cadmium, copper, lead, mercury and zinc were determined in the sediments and in the soft tissues of the mussels. Mussels from contaminated site, evidenced by high metal pollution indices (MPI) of the sediment and the mussel tissues, showed the highest percentage of polymorphic loci (78.6%), while those collected from the uncontaminated sites had lower MPI of the sediment and mussel tissue, and exhibited lower percentages of polymorphic loci (35.7-57.1%). The population from the contaminated site showed the highest excess of heterozygosity (0.289) when compared to that of the populations from the three uncontaminated sites (0.108-0.149). Allozyme frequencies at the phosphoglucomutase (PGM; E.C. 2.7.5.1) locus also differed between the contaminated and uncontaminated populations. Previous studies have shown that exposure to heavy metals can select or counter-select for particular alleles at this locus. The present results suggest that allozyme polymorphism in P. viridis is a potential biomonitoring tool for heavy metal contamination but further validation is required.
  14. Alofe O, Kisanga E, Inayat-Hussain SH, Fukumura M, Garcia-Milian R, Perera L, et al.
    Environ Int, 2019 10;131:104969.
    PMID: 31310931 DOI: 10.1016/j.envint.2019.104969
    Environmental and occupational exposure to industrial chemicals has been linked to toxic and carcinogenic effects in animal models and human studies. However, current toxicology testing does not thoroughly explore the endocrine disrupting effects of industrial chemicals, which may have low dose effects not predicted when determining the limit of toxicity. The objective of this study was to evaluate the endocrine disrupting potential of a broad range of chemicals used in the petrochemical sector. Therefore, 139 chemicals were classified for reproductive toxicity based on the United Nations Globally Harmonized System for hazard classification. These chemicals were evaluated in PubMed for reported endocrine disrupting activity, and their endocrine disrupting potential was estimated by identifying chemicals with active nuclear receptor endpoints publicly available databases. Evaluation of ToxCast data suggested that these chemicals preferentially alter the activity of the estrogen receptor (ER). Four chemicals were prioritized for in vitro testing using the ER-positive, immortalized human uterine Ishikawa cell line and a range of concentrations below the reported limit of toxicity in humans. We found that 2,6-di-tert-butyl-p-cresol (BHT) and diethanolamine (DEA) repressed the basal expression of estrogen-responsive genes PGR, NPPC, and GREB1 in Ishikawa cells, while tetrachloroethylene (PCE) and 2,2'-methyliminodiethanol (MDEA) induced the expression of these genes. Furthermore, low-dose combinations of PCE and MDEA produced additive effects. All four chemicals interfered with estradiol-mediated induction of PGR, NPPC, and GREB1. Molecular docking demonstrated that these chemicals could bind to the ligand binding site of ERα, suggesting the potential for direct stimulatory or inhibitory effects. We found that these chemicals altered rates of proliferation and regulated the expression of cell proliferation associated genes. These findings demonstrate previously unappreciated endocrine disrupting effects and underscore the importance of testing the endocrine disrupting potential of chemicals in the future to better understand their potential to impact public health.
  15. Barnett-Itzhaki Z, Esteban López M, Puttaswamy N, Berman T
    Environ Int, 2018 07;116:156-164.
    PMID: 29684824 DOI: 10.1016/j.envint.2018.03.046
    Rapid development and industrialization in Southeast (SE) Asia has led to environmental pollution, potentially exposing the general population to environmental contaminants. Human biomonitoring (HBM), measurement of chemical and/or their metabolites in human tissues and fluids, is an important tool for assessing cumulative exposure to complex mixtures of chemicals and for monitoring chemical exposures in the general population. While there are national HBM programs in several developed countries, there are no such national programs in most of the SE Asian countries. However, in recent years there has been progress in the field of HBM in many of the SE Asian countries. In this review, we present recent HBM studies in five selected SE Asian countries: Bangladesh, Indonesia, Malaysia, Myanmar and Thailand. While there is extensive HBM research in several SE Asian countries, such as Thailand, in other countries HBM studies are limited and focus on traditional environmental pollutants (such as lead, arsenic and mercury). Further development of this field in SE Asia would be benefited by establishment of laboratory capacity, improving quality control and assurance, collaboration with international experts and consortiums, and sharing of protocols and training both for pre-analytical and analytical phases. This review highlights the impressive progress in HBM research in selected SE Asian countries and provides recommendations for development of this field.
  16. Choi D, Oh JI, Lee J, Park YK, Lam SS, Kwon EE
    Environ Int, 2019 11;132:105037.
    PMID: 31437646 DOI: 10.1016/j.envint.2019.105037
    In an effort to seek a new technical platform for disposal of drinking water treatment sludge (DWTS: alum sludge), pyrolysis of DWTS was mainly investigated in this study. To establish a more sustainable thermolytic platform for DWTS, this study particularly employed CO2 as reactive gas medium. Thus, this study laid great emphasis on elucidating the mechanistic roles of CO2 during the thermolysis of DWTS. A series of the TGA tests of DWTS in CO2 in reference to N2 revealed no occurrence of the heterogeneous reaction between CO2 and the sample surface of DWTS. As such, at the temperature regime before initiating the Boudouard reaction (i.e., ≥700 °C), the mass decay patterns of DWTS in N2 and CO2 were nearly identical. However, the gaseous effluents from lab-scale pyrolysis of DWTS in CO2 in reference to N2 were different. In sum, the homogeneous reactions between CO2 and volatile matters (VMs) evolved from the thermolysis of DWTS led to the enhanced generation of CO. Also, CO2 suppressed dehydrogenation of VMs. Such the genuine mechanistic roles of CO2 in the thermolysis of DWTS subsequently led to the compositional modifications of the chemical species in pyrolytic oil. Furthermore, the biochar composite was obtained as byproduct of pyrolysis of DWTS. Considering that the high content of Al2O3 and Fe-species in the biochar composite imparts a strong affinity for As(V), the practical use of the biochar composite as a sorptive material for arsenic (V) was evaluated at the fundamental levels. This work reported that adsorption of As(V) onto the biochar composite followed the pseudo-second order model and the Freundlich isotherm model.
  17. Adeel M, Lee JY, Zain M, Rizwan M, Nawab A, Ahmad MA, et al.
    Environ Int, 2019 06;127:785-800.
    PMID: 31039528 DOI: 10.1016/j.envint.2019.03.022
    BACKGROUND: Rare earth elements (REEs) are gaining attention due to rapid rise of modern industries and technological developments in their usage and residual fingerprinting. Cryptic entry of REEs in the natural resources and environment is significant; therefore, life on earth is prone to their nasty effects. Scientific sectors have expressed concerns over the entry of REEs into food chains, which ultimately influences their intake and metabolism in the living organisms.

    OBJECTIVES: Extensive scientific collections and intensive look in to the latest explorations agglomerated in this document aim to depict the distribution of REEs in soil, sediments, surface waters and groundwater possibly around the globe. Furthermore, it draws attention towards potential risks of intensive industrialization and modern agriculture to the exposure of REEs, and their effects on living organisms. It also draws links of REEs usage and their footprints in natural resources with the major food chains involving plants, animals and humans.

    METHODS: Scientific literature preferably spanning over the last five years was obtained online from the MEDLINE and other sources publishing the latest studies on REEs distribution, properties, usage, cycling and intrusion in the environment and food-chains. Distribution of REEs in agricultural soils, sediments, surface and ground water was drawn on the global map, together with transport pathways of REEs and their cycling in the natural resources.

    RESULTS: Fourteen REEs (Ce, Dy, Er, Eu, Gd, Ho, La, Lu, Nd, Pr, Sm, Tb, Th and Yb) were plighted in this study. Wide range of their concentrations has been detected in agricultural soils (<15.9-249.1 μg g-1) and in groundwater (<3.1-146.2 μg L-1) at various sites worldwide. They have strong tendency to accumulate in the human body, and thus associated with kidney stones. The REEs could also perturb the animal physiology, especially affecting the reproductive development in both terrestrial and aquatic animals. In plants, REEs might affect the germination, root and shoot development and flowering at concentration ranging from 0.4 to 150 mg kg-1.

    CONCLUSIONS: This review article precisely narrates the current status, sources, and potential effects of REEs on plants, animals, humans health. There are also a few examples where REEs have been used to benefit human health. However, still there is scarce information about threshold levels of REEs in the soil, aquatic, and terrestrial resources as well as living entities. Therefore, an aggressive effort is required for global action to generate more data on REEs. This implies we prescribe an urgent need for inter-disciplinary studies about REEs in order to identify their toxic effects on both ecosystems and organisms.

  18. Ma NL, Hansen M, Roland Therkildsen O, Kjær Christensen T, Skjold Tjørnløv R, Garbus SE, et al.
    Environ Int, 2020 09;142:105866.
    PMID: 32590281 DOI: 10.1016/j.envint.2020.105866
    The Baltic/Wadden Sea Flyway of common eiders has declined over the past three decades. Multiple factors such as contaminant exposure, global warming, hunting, white-tailed eagle predation, decreased agricultural eutrophication and infectious diseases have been suggested to explain the decline. We collected information on body mass, mercury (Hg) concentration, biochemistry and untargeted metabolomics of incubating birds in two colonies in the Danish Straits (Hov Røn, n = 100; Agersø, n = 29) and in one colony in the Baltic proper (Christiansø, n = 23) to look into their metabolisms and energy balance. Body mass was available from early and late incubation for Hov Røn and Christiansø, showing a significant decline (25-30%) in both colonies with late body mass at Christiansø being the lowest. Whole blood concentrations of total mercury Hg were significantly higher in birds at Christiansø in the east compared to Hov Røn in the west. All birds in the three colonies had Hg concentrations in the range of ≤1.0 μg/g ww, which indicates that the risk of effects on reproduction is in the no to low risk category for wild birds. Among the biochemical measures, glucose, fructosamine, amylase, albumin and protein decreased significantly from early to late incubation at Hov Røn and Christiansø, reflecting long-term fastening as supported by the decline in body mass. Untargeted metabolomics performed on Christiansø eiders revealed presence of 8,433 plasma metabolites. Of these, 3,179 metabolites changed significantly (log2-fold change ≥1, p ≤ 0.05) from the early to late incubation. For example, smaller peptides and vitamin B2 (riboflavin) were significantly down-regulated while 11-deoxycorticosterone and palmitoylcarnitine were significantly upregulated. These results show that cumulative stress including fasting during incubation affect the eiders' biochemical profile and energy metabolism and that this may be most pronounced for the Christiansø colony in the Baltic proper. This amplify the events of temperature increases and food web changes caused by global warming that eventually accelerate the loss in body weight. Future studies should examine the relationship between body condition, temperature and reproductive outcomes and include mapping of food web contaminant, energy and nutrient content to better understand, manage and conserve the populations.
  19. French MA, Fiona Barker S, Taruc RR, Ansariadi A, Duffy GA, Saifuddaolah M, et al.
    Environ Int, 2021 10;155:106679.
    PMID: 34126296 DOI: 10.1016/j.envint.2021.106679
    BACKGROUND: The intense interactions between people, animals and environmental systems in urban informal settlements compromise human and environmental health. Inadequate water and sanitation services, compounded by exposure to flooding and climate change risks, expose inhabitants to environmental contamination causing poor health and wellbeing and degrading ecosystems. However, the exact nature and full scope of risks and exposure pathways between human health and the environment in informal settlements are uncertain. Existing models are limited to microbiological linkages related to faecal-oral exposures at the individual level, and do not account for a broader range of human-environmental variables and interactions that affect population health and wellbeing.

    METHODS: We undertook a 12-month health and environmental assessment in 12 flood-prone informal settlements in Makassar, Indonesia. We obtained caregiver-reported health data, anthropometric measurements, stool and blood samples from children 

  20. Newell B, Siri J
    Environ Int, 2016 10;95:93-7.
    PMID: 27553880 DOI: 10.1016/j.envint.2016.08.003
    Cities are complex adaptive systems whose responses to policy initiatives emerge from feedback interactions between their parts. Urban policy makers must routinely deal with both detail and dynamic complexity, coupled with high levels of diversity, uncertainty and contingency. In such circumstances, it is difficult to generate reliable predictions of health-policy outcomes. In this paper we explore the potential for low-order system dynamics (LOSD) models to make a contribution towards meeting this challenge. By definition, LOSD models have few state variables (≤5), illustrate the non-linear effects caused by feedback and accumulation, and focus on endogenous dynamics generated within well-defined boundaries. We suggest that experience with LOSD models can help practitioners to develop an understanding of basic principles of system dynamics, giving them the ability to 'see with new eyes'. Because efforts to build a set of LOSD models can help a transdisciplinary group to develop a shared, coherent view of the problems that they seek to tackle, such models can also become the foundations of 'powerful ideas'. Powerful ideas are conceptual metaphors that provide the members of a policy-making group with the a priori shared context required for effective communication, the co-production of knowledge, and the collaborative development of effective public health policies.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links