Displaying all 3 publications

Abstract:
Sort:
  1. Zarif F, Anasir MI, Koh JX, Chew MF, Poh CL
    Virus Res, 2021 Oct 02;303:198456.
    PMID: 34314773 DOI: 10.1016/j.virusres.2021.198456
    Enterovirus A71 (EV-A71) is one of the main causative agents of hand, foot and mouth disease (HFMD). SP40 peptide was previously identified to inhibit EV-A71 strains from genotypes A, B and C. However, the stability and antiviral activity of SP40 peptide in human serum are yet to be established. To address this, we evaluated the stability and anti-EV-A71 activity of SP40 peptide after incubation in 25 % human serum. Reverse-phase high-performance liquid chromatography (RP-HPLC) and liquid chromatography-mass spectrometry (LC/MS) were utilized to evaluate serum stability and cleavage patterns of SP40 peptide after incubation in human serum. Cell protection assay was used to evaluate the anti-EV-A71 activity of SP40 peptide after incubation in human serum and to identify the minimal active sequence of SP40 peptide that retained antiviral activity. The results showed that the SP40 peptide was stable in human serum with 56 % of the full-length SP40 peptide being detected after 48 h incubation in human serum. The SP40 peptide was mainly cleaved by exopeptidases and no endoprotease recognition sites were identified within the SP40 peptide. Cell protection assays revealed that the SP40 peptide retained substantial activity after 24 and 48 h incubation in human serum. Furthermore, the data revealed that three amino acids at the N-terminus and one amino acid at the C-terminus of the SP40 peptide were dispensable for its antiviral activity. Importantly, the four truncated peptides displayed better potency than the full-length SP40 peptide. Overall, this study provided insights into the stability and activity of SP40 peptide in human serum and will facilitate the development of SP40 peptide as an anti-EV-A71 agent.
  2. Cheong AM, Jessica Koh JX, Patrick NO, Tan CP, Nyam KL
    J Food Sci, 2018 Mar;83(3):854-863.
    PMID: 29412455 DOI: 10.1111/1750-3841.14038
    This study aimed to evaluate the effect of kenaf seed oil (KSO), kenaf seed oil-in-water macroemulsion (KSOM), kenaf seed oil-in-water nanoemulsions (KSON), and emulsifier mixtures (EM) on serum lipid profile, liver oxidative status, and histopathological changes in high-cholesterol fed rats. Stability and characteristic of KSOM and KSON were carried out prior to in vivo study. Forty-two Sprague-Dawley rats were divided into 7 groups (6 rats each) and induced hypercholesterolemia by feeding high cholesterol diet (HCD) for 14 days prior to treatments. Different treatments were introduced on day 15 to 29 while supplemented with HCD and removal of HCD during treatment on day 30 to 43, except for HCD group. Body weight and serum lipid profiles were measured at 3 different points: after hypercholesterolemia was induced, on day 29, and at the end of the experiment. Relative liver weight, atherogenic index, coronary risk index, and fecal total bile acids were also determined at the end of experiment. KSON showed significantly higher stability than KSOM and FTIR exhibited good encapsulation of KSO after 1.5 years of storage. Serum total cholesterol, low density lipoprotein cholesterol, lipid peroxidation levels in HCD group without treatment were significantly higher compared to normal control group and all treatment groups. All samples demonstrated hypocholesterolemic effect, but KSON exhibited higher efficiency in cholesterol-lowering properties, weight control and decreased liver fat as confirmed by histopathological evaluation. The overall results revealed that the efficacy of different treatments was in descending order of KSON, KSO, KSOM, and EM.

    PRACTICAL APPLICATION: Kenaf seed oil-in-water nanoemulsion (KSON) has the potential to be used as a natural alternative to the synthetic hypocholesterolemic drug in the future. However, larger sample size and clinical trial are needed to confirm on this potential application. In addition, treatment with KSON was suggested to prevent cardiovascular disease and fatty liver.

  3. Koh JX, Masomian M, Anasir MI, Ong SK, Poh CL
    Vaccines (Basel), 2023 Mar 11;11(3).
    PMID: 36992213 DOI: 10.3390/vaccines11030629
    EV-A71 is a common viral pathogen that causes hand, foot and mouth disease. It is a single-stranded RNA virus that has a low fidelity RNA polymerase and, as a result, spontaneous mutations frequently occur in the EV-A71 genome. The mutations within the genome give rise to quasispecies within the viral population that could be further defined by haplotypes. In vitro virulence of EV-A71 was shown by plaque size in Rhabdomyosarcoma (RD) cells, which was substantiated by in vitro characterizations of growth, RNA replication, binding, attachment and host cell internalization. Viruses could exhibit different host cell adaptations in different cell lines during viral passaging. The EV-A71/WT (derived from EV-A71 subgenotype B4) was shown to comprise six haplotypes through next-generation sequencing, where only EV-A71/Hap2 was found to be cultivable in RD cells, while EV-A71/Hap4 was the only cultivable haplotype in Vero cells. The EV-A71/WT produced plaques of four different sizes (small, medium, big, huge) in RD cells, while only two plaque variants (small, medium) were present in Vero cells. The small plaque variant isolated from RD cells displayed lower RNA replication rates, slower in vitro growth kinetics, higher TCID50 and lower attachment, binding and entry ability when compared against EV-A71/WT due to the mutation at 3D-S228P that disrupted the active site of the RNA polymerase, resulting in low replication and growth of the variant.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links