Displaying publications 1 - 20 of 31 in total

Abstract:
Sort:
  1. Nordin F, Ahmad RNR, Farzaneh F
    Virus Res, 2017 05 02;235:106-114.
    PMID: 28408207 DOI: 10.1016/j.virusres.2017.04.007
    Induced pluripotent stem cells (iPSC) are somatic cells reprogrammed to pluripotency by forced expression of pluripotency factors. These cells are shown to have the same pluripotent potential as embryonic stem cells (ESC) and considered as an alternative to the much controversial usage of ESC which involved human embryos. However, the traditional method in reprogramming cells into iPSC using genome-integrating retro- or lenti- viruses remains an obstacle for its application in clinical setting. Although numerous studies have been conducted for a safer DNA-based reprogramming, reprogramming of iPSC by genetic modifications may raise the possibility of malignant transformation and has been a major limitation for its usage in clinical applications. Therefore, there is a need for an alternative method to reprogram the cells without the use of gene editing and a much safer way to deliver transcription factors to induce pluripotency on target cells. Using protein transduction approach, a number of studies have demonstrated the generation of human iPSCs from human fibroblasts and mouse embryonic fibroblasts by direct delivery of reprogramming proteins. In this review, the definition and mechanism of HIV-TAT protein (a type of protein transduction domain) in delivering recombinant proteins, including the potential of protein-based delivery to induce iPSC were further discussed.
  2. Yee PTI, Mohamed RAH, Ong SK, Tan KO, Poh CL
    Virus Res, 2017 06 15;238:243-252.
    PMID: 28705680 DOI: 10.1016/j.virusres.2017.07.010
    One of the leading causes of the hand, foot and mouth disease (HFMD) is Enterovirus 71 (EV-A71), displaying symptoms such as fever and ulcers in children but some strains can produce cardiopulmonary oedema which leads to death. There is no FDA-approved vaccine for prevention of severe HFMD. The molecular determinants of virulence for EV-A71 are unclear. It could be a single or a combination of amino acids that determines virulence in different EV-A71 genotype/sub-genotypes. Several EV-A71 strains bearing single nucleotide (nt) mutations were constructed and the contribution of each mutation to virulence was evaluated. The nt(s) that contributed to significant reduction in virulence in vitro were selected and each mutation was introduced separately into the genome to construct the multiply mutated EV-A71 strain (MMS) which carried six substitutions of nt(s) at the 5'-NTR (U700C), VP1-145 (E to G), VP1-98E, VP1-244K and G64R in the vaccine seed strain that had a partial deletion within the 5'-NTR region (nt. 475-485) of Δ11bp. In comparison to the wild type strain, the MMS showed low virulence as it produced very low RNA copy number, plaque count, VP1 and had 105-fold higher TCID50, indicative of a promising LAV candidate that should be further evaluated in vivo.
  3. Sadeghi M, Popov V, Guzman H, Phan TG, Vasilakis N, Tesh R, et al.
    Virus Res, 2017 10 15;242:49-57.
    PMID: 28855097 DOI: 10.1016/j.virusres.2017.08.012
    Eleven viral isolates derived mostly in albopictus C6/36 cells from mosquito pools collected in Southeast Asia and the Americas between 1966 and 2014 contained particles with electron microscopy morphology typical of reoviruses. Metagenomics analysis yielded the near complete genomes of three novel reoviruses, Big Cypress orbivirus, Ninarumi virus, and High Island virus and a new tetravirus, Sarawak virus. Strains of previously characterized Sathuvarachi, Yunnan, Banna and Parry's Lagoon viruses (Reoviridae), Bontang virus (Mesoniviridae), and Culex theileri flavivirus (Flaviviridae) were also characterized. The availability of these mosquito virus genomes will facilitate their detection by metagenomics or PCR to better determine their geographic range, extent of host tropism, and possible association with arthropod or vertebrate disease.
  4. Chakraborty S, Deb B, Barbhuiya PA, Uddin A
    Virus Res, 2019 04 02;263:129-138.
    PMID: 30664908 DOI: 10.1016/j.virusres.2019.01.011
    Codon usage bias (CUB) is the unequal usage of synonymous codons of an amino acid in which some codons are used more often than others and is widely used in understanding molecular biology, genetics, and functional regulation of gene expression. Nipah virus (NiV) is an emerging zoonotic paramyxovirus that causes fatal disease in both humans and animals. NiV was first identified during an outbreak of a disease in Malaysia in 1998 and then occurred periodically since 2001 in India, Bangladesh, and the Philippines. We used bioinformatics tools to analyze the codon usage patterns in a genome-wide manner among 11 genomes of NiV as no work was reported yet. The compositional properties revealed that the overall GC and AT contents were 41.96 and 58.04%, respectively i.e. Nipah virus genes were AT-rich. Correlation analysis between overall nucleotide composition and its 3rd codon position suggested that both mutation pressure and natural selection might influence the CUB across Nipah genomes. Neutrality plot revealed natural selection might have played a major role while mutation pressure had a minor role in shaping the codon usage bias in NiV genomes.
  5. Vilcek S, Stadejek T, Ballagi-Pordány A, Lowings JP, Paton DJ, Belák S
    Virus Res, 1996 Aug;43(2):137-47.
    PMID: 8864203
    The genetic variability of classical swine fever virus was studied by comparative nucleotide sequence analysis of 76 virus isolates, collected during a half century from three continents. Parts of the E2 (gp55) and the polymerase gene coding regions of the viral genome were amplified by RT-PCR and DNA fragments of 254 and 207 bp, respectively, were sequenced. The comparative sequence analysis of the E2 region revealed two main phylogenetic groups of CSFV, indicating that the virus apparently evolved from two ancestor nodes. Group I (represented by Brescia strain) consisted of old and recent American and Asian viruses, as well as old English isolates from the 1950s. This group was subdivided into three subgroups, termed I.A-I.C. Group II (represented by Alfort strain) consisted of relatively recent isolates from Europe, together with strain Osaka, which was isolated in Japan from a pig of European origin. Based on genetic distances the group was divided into subgroups II.A and II.B. Malaysian isolates were branched into both groups, indicating multiple origins for contemporaneous outbreaks in that country. All ten vaccine strains tested were branched in group I, implying a common ancestor. The Japanese Kanagawa strain, isolated in 1974, and the British Congenital Tremor strain from 1964 were the most distinct variants of CSFV in our collection. The comparison of the nucleotide sequences of the polymerase coding region of 32 European strains distinguished subgroups II.A and II.B which were similar to the corresponding subgroups of the E2 phylogenetic tree. Thus, the results revealed that the E2 region and the polymerase coding regions seem to be appropriate for the grouping of CSFV isolates from all over the world, distinguishing two major groups of the virus. The reliability of these regions for phylogenetic analysis is indicated by the similarity of the results obtained from the two separate parts of the CSFV genome.
  6. Chong HY, Leow CY, Abdul Majeed AB, Leow CH
    Virus Res, 2019 12;274:197770.
    PMID: 31626874 DOI: 10.1016/j.virusres.2019.197770
    Flaviviruses are group of single stranded RNA viruses that cause severe endemic infection and epidemics on a global scale. It presents a significant health impact worldwide and the viruses have the potential to emerge and outbreak in a non-endemic geographical region. Effective vaccines for prophylaxis are only available for several flaviviruses such as Yellow Fever virus, Tick-borne Encephalitis Virus, Dengue Virus and Japanese Encephalitis Virus and there is no antiflaviviral agent being marketed. This review discusses the flavivirus genome, replication cycle, epidemiology, clinical presentation and pathogenesis upon infection. Effective humoral response is critical to confer protective immunity against flaviviruses. Hence, we have also highlighted the immune responses elicited upon infection, various diagnostic facilities available for flaviviral disease and monoclonal antibodies available to date against flavivirus infection.
  7. Eshaghi M, Tan WS, Mohidin TB, Yusoff K
    Virus Res, 2004 Nov;106(1):71-6.
    PMID: 15522449
    A method for serological diagnosis of Nipah virus (NiV) is described. DNA encoding truncated G protein of NiV was cloned into the pFastBac HT vector, and the fusion protein to His-tag was expressed in insect cells by recombinant baculovirus. The resulting His-G recombinant fusion protein was purified by affinity chromatography and used as the coating antigen for serological testing by indirect enzyme-linked immunosorbant assay (ELISA). When tested against a panel of swine serum samples, the recombinant G protein-based ELISA successfully discriminated all 40 samples previously determined to be serum neutralizing test (SNT) positive from 11 SNT negatives samples. The data show that the recombinant G protein exhibits the antigenic epitopes and conformation necessary for specific antigen-antibody recognition. The main advantage of the recombinant G protein-based NiV ELISA compared to an ELISA using whole virus antigen is the use of a single antigenic protein instead of inactivated whole virus which is required to be prepared under high risk and cost. This test is suitable for routine diagnosis of NiV and also for epidemiological surveys as it allows highly reliable testing of a large number of sera rapidly.
  8. Pritchard LI, Sendow I, Lunt R, Hassan SH, Kattenbelt J, Gould AR, et al.
    Virus Res, 2004 May;101(2):193-201.
    PMID: 15041187
    Bluetongue viruses (BTV) were isolated from sentinel cattle in Malaysia and at two sites in Indonesia. We identified eight serotypes some of which appeared to have a wide distribution throughout this region, while others were only isolated in Malaysia or Australia. Nearly half of the 24 known BTV serotypes have now been identified in Asia. Further, we investigated the genetic diversity of their RNA segments 3 and 10. Using partial nucleotide sequences of the RNA segment 3 (540 bp) which codes for the conserved core protein (VP3), the BTV isolates were found to be unique to the previously defined Australasian topotype and could be further subdivided into four distinct clades or genotypes. Certain of these genotypes appeared to be geographically restricted while others were distributed widely throughout the region. Similarly, the complete nucleotide sequences of the RNA segment 10 (822 bp), coding for the non-structural protein (NS3/3A), were also conserved and grouped into the five genotypes; the BTV isolates could be grouped into three Asian genotypes and two Nth American/Sth African genotypes.
  9. Goldsmith CS, Whistler T, Rollin PE, Ksiazek TG, Rota PA, Bellini WJ, et al.
    Virus Res, 2003 Mar;92(1):89-98.
    PMID: 12606080
    Nipah virus, which was first recognized during an outbreak of encephalitis with high mortality in Peninsular Malaysia during 1998-1999, is most closely related to Hendra virus, another emergent paramyxovirus first recognized in Australia in 1994. We have studied the morphologic features of Nipah virus in infected Vero E6 cells and human brain by using standard and immunogold electron microscopy and ultrastructural in situ hybridization. Nipah virions are enveloped particles composed of a tangle of filamentous nucleocapsids and measured as large as 1900 nm in diameter. The nucleocapsids measured up to 1.67 microm in length and had the herringbone structure characteristic for paramyxoviruses. Cellular infection was associated with multinucleation, intracytoplasmic nucleocapsid inclusions (NCIs), and long cytoplasmic tubules. Previously undescribed for other members of the family Paramyxoviridae, infected cells also contained an inclusion formed of reticular structures. Ultrastructural ISH studies suggest these inclusions play an important role in the transcription process.
  10. AbuBakar S, Chee HY, Al-Kobaisi MF, Xiaoshan J, Chua KB, Lam SK
    Virus Res, 1999 May;61(1):1-9.
    PMID: 10426204
    Thirteen enterovirus 71 (EV71) isolates were obtained from both fatal and non-fatal infections of patients seen in Peninsula Malaysia and in Sarawak during an outbreak of hand, foot and mouth disease (HFMD) in Malaysia in 1997, with incidences of fatal brainstem encephalomyelitis. The isolates were identified using immunofluorescence staining, neutralization assays, and partial sequencing of the 5' untranslated regions (UTR). Assessment of the potential genetic relationships of the isolates using the partial 5'UTR sequences suggested clustering of the isolates into at least two main clusters. Isolates from Peninsula Malaysia were found in both clusters whereas Sarawak-derived isolates clustered only in cluster II. Isolates derived from fatal infections, however, occurred in both clusters and no distinctive nucleotide sequences could be attributed to the fatal isolates. Examination of the nucleotide sequences revealed at least 13 nucleotide positions in all the isolates which differ completely from the previously reported EV71 5'UTR sequences. In addition, at least 11 nucleotide position differences within the 5'UTR were noted which differentiated cluster I from cluster II. Predicted secondary RNA structures drawn using the nucleotide sequences also suggested differences between isolates from the two clusters. These findings suggest the presence of at least two potentially virulent EV71 co-circulating in Malaysia during the 1997 HFMD outbreak.
  11. Pritchard LI, Gould AR, Wilson WC, Thompson L, Mertens PP, Wade-Evans AM
    Virus Res, 1995 Mar;35(3):247-61.
    PMID: 7785314
    The nucleotide sequence of the RNA segment 3 of bluetongue virus (BTV) serotype 2 (Ona-A) from North America was determined to be 2772 nucleotides containing a single large open reading frame of 2703 nucleotides (901 amino acid). The predicted VP3 protein exhibited general physiochemical properties (including hydropathy profiles) which were very similar to those previously deduced for other BTV VP3 proteins. Partial genome segment 3 sequences, obtained by polymerase chain reaction (PCR) sequencing, of BTV isolates from the Caribbean were compared to those from North America, South Africa, India, Indonesia, Malaysia and Australia, as well as other orbiviruses, to determine the phylogenetic relationships amongst them. Three major BTV topotypes (Gould, A.R. (1987) Virus Res. 7, 169-183) were observed which had nucleotide sequences that differed by approximately 20%. At the molecular level, geographic separation had resulted in significant divergence in the BTV genome segment 3 sequences, consistent with the evolution of distinct viral populations. The close phylogenetic relationship between the BTV serotype 2 (Ona-A strain) from Florida and the BTV serotypes 1, 6 and 12 from Jamaica and Honduras, indicated that the presence of BTV serotype 2 in North America was probably due to an exotic incursion from the Caribbean region as previously proposed by Sellers and Maaroof ((1989) Can. J. Vet. Res. 53, 100-102) based on trajectory analysis. Conversely, nucleotide sequence analysis of Caribbean BTV serotype 17 isolates suggested they arose from incursions which originated in the USA, possibly from a BTV population distinct from those circulating in Wyoming.
  12. Li S, Zhang L, Wang Y, Wang S, Sun H, Su W, et al.
    Virus Res, 2013 Jan;171(1):238-41.
    PMID: 23116594 DOI: 10.1016/j.virusres.2012.10.019
    Duck Tembusu virus (TMUV) is a recently identified pathogenic flavivirus that causes severe egg drop and encephalitis in Chinese ducks and geese. It has been found to be most closely related to the mosquito-origin Tembusu virus and chicken Sitiawan virus reported in Malaysia. However, the ecological characteristics and the pathogenesis of duck TMUV are largely unknown. We report the construction of full-length cDNA clone of duck TMUV strain JXSP. The virus genome was reverse transcribed, amplified as seven overlapping fragments and successively ligated into the low copy number vector pWSK29 under the control of a T7 promoter. Transfection of BHK-21 cells with the transcribed RNA from the full-length cDNA clone resulted in production of highly infectious progeny virus. In vitro growth characteristics in BHK-21 cells and virulence in ducklings and BALB/c mice were similar for the rescued and parental viruses. This stable infectious cDNA clone will be a valuable tool for studying the genetic determinants of duck TMUV.
  13. Othman S, Rahman NA, Yusof R
    Virus Res, 2012 Jan;163(1):238-45.
    PMID: 22001567 DOI: 10.1016/j.virusres.2011.09.040
    Despite aggressive efforts in dengue research, the control of dengue diseases and discovery of therapeutics against them await complete elucidation of its complex immune-pathogenesis. Unlike many viruses that escape the host's immune responses by suppressing the major histocompatibility complex (MHC) Class I pathway, many Flaviviruses up-regulate the cell surface expression of MHC Class I complex. We recently reported MHC Class I HLA-A2 promoter activation by all serotypes of dengue virus (DV). The mechanism by which DV regulates this is further explored here in HepG2 human liver cell line. Using real-time PCR, evidence that, similar to infections by other Flaviviruses, DV infection has the ability to up-regulate the MHC Class I transcription and mRNA synthesis, is presented. The region responsive towards DV infection of all serotypes was mapped to the Class I Regulatory Complex (CRC) of the HLA-A2 promoter. Competition electrophoretic mobility shift assay (EMSA) with NFκB probe established the presence of specific DNA-protein complex in DV-infected nuclear extracts. Antibody-supershift assays identified the MHC Class I promoter activation by DV to occur through binding of p65/p50 heterodimers and p65 homodimers to κB1 and κB2 cis-acting elements, respectively, within the CRC, and not with the interferon consensus sequence (ICS). This study presents evidence of MHC Class I gene modulation by DV, hence providing a better understanding of dengue immune-pathogenesis that would consequently facilitate the discovery of antiviral therapeutics against dengue.
  14. Ksiazek TG, Rota PA, Rollin PE
    Virus Res, 2011 Dec;162(1-2):173-83.
    PMID: 21963678 DOI: 10.1016/j.virusres.2011.09.026
    The emergence of Hendra and Nipah viruses in the 1990s has been followed by the further emergence of these viruses in the tropical Old World. The history and current knowledge of the disease, the viruses and their epidemiology is reviewed in this article. A historical aside summarizes the role that Dr. Brian W.J. Mahy played at critical junctures in the early stories of these viruses.
  15. Holmes EC, Tio PH, Perera D, Muhi J, Cardosa J
    Virus Res, 2009 Jul;143(1):1-5.
    PMID: 19463715 DOI: 10.1016/j.virusres.2009.02.020
    Although dengue is a common disease in South-East Asia, there is a marked absence of virological data from the Malaysian state of Sarawak located on the island of Borneo. From 1997 to 2002 we noted the co-circulation of DENV-2, DENV-3 and DENV-4 in Sarawak. To determine the origins of these Sarawak viruses we obtained the complete E gene sequences of 21 isolates. A phylogenetic analysis revealed multiple entries of DENV-2 and DENV-4 into Sarawak, such that multiple lineages co-circulate, yet with little exportation from Sarawak. Notably, all viral isolates were most closely related to those circulating in different localities in South-East Asia. In sum, our analysis reveals a frequent traffic of DENV in South-East Asia, with Sarawak representing a local sink population.
  16. Osman O, Fong MY, Devi S
    Virus Res, 2008 Jul;135(1):48-52.
    PMID: 18406488 DOI: 10.1016/j.virusres.2008.02.006
    In a previous study, we have reported the detection and isolation of dengue virus in Brunei (Osman, O., Fong, M.Y., Devi, S., 2007. A preliminary study of dengue infection in Brunei. JJID 60 (4), 205-208). DEN-2 was the predominant serotype followed by DEN-1. The full genomic sequences of 3 DEN-2 viruses isolated during the 2005-2006 dengue incident in Brunei were determined. Twenty-five primer sets were designed to amplify contiguous overlapping fragments of approximately 500-600 base pairs spanning the entire sequence of the viral genome. The amplified PCR products were sent for sequencing and their nucleotides and the deduced amino acids were determined. All three DEN-2 virus isolated were clustered in the Cosmopolitan genotype of the DEN-2 classification by Twiddy et al. This work constitutes the first complete genetic characterization of three Brunei DEN-2 virus strains.
  17. Meng SL, Yan JX, Xu GL, Nadin-Davis SA, Ming PG, Liu SY, et al.
    Virus Res, 2007 Mar;124(1-2):125-38.
    PMID: 17129631
    A group of 31 rabies viruses (RABVs), recovered primarily from dogs, one deer and one human case, were collected from various areas in China between 1989 and 2006. Complete G gene sequences determined for these isolates indicated identities of nucleotide and amino acid sequences of >or=87% and 93.8%, respectively. Phylogenetic analysis of these and some additional Chinese isolates clearly supported the placement of all Chinese viruses in Lyssavirus genotype 1 and divided all Chinese isolates between four distinct groups (I-IV). Several variants identified within the most commonly encountered group I were distributed according to their geographical origins. A comparison of representative Chinese viruses with other isolates retrieved world-wide indicated a close evolutionary relationship between China group I and II viruses and those of Indonesia while China group III viruses formed an outlying branch to variants from Malaysia and Thailand. China group IV viruses were closely related to several vaccine strains. The predicted glycoprotein sequences of these RABVs variants are presented and discussed with respect to the utility of the anti-rabies biologicals currently employed in China.
  18. Khan A, Mushtaq MH, Ahmad MUD, Nazir J, Farooqi SH, Khan A
    Virus Res, 2017 08 15;240:56-63.
    PMID: 28757141 DOI: 10.1016/j.virusres.2017.07.022
    BACKGROUND: A widespread epidemic of equine influenza (EI) occurred in nonvaccinated equine population across multiple districts in Khyber Pakhtunkhwa Province of Pakistan during 2015-2016.

    OBJECTIVES AND METHODS: An epidemiological surveillance study was conducted from Oct 2015 to April 2016 to investigate the outbreak. EI virus strains were isolated in embryonated eggs from suspected equines swab samples and were subjected to genome sequencing using M13 tagged segment specific primers. Phylogenetic analyses of the nucleotide sequences were concluded using Geneious. Haemagglutinin (HA), Neuraminidase (NA), Matrix (M) and nucleoprotein (NP) genes nucleotide and amino acid sequences of the isolated viruses were aligned with those of OIE recommended, FC-1, FC-2, and contemporary isolates of influenza A viruses from other species.

    RESULTS: HA and NA genes amino acid sequences were very similar to Tennessee/14 and Malaysia/15 of FC-1 and clustered with the contemporary isolates recently reported in the USA. Phylogenetic analysis showed that these viruses were mostly identical (with 99.6% and 97.4% nucleotide homology) to, and were reassortants containing chicken/Pakistan/14 (H7N3) and Canine/Beijing/10 (H3N2) like M and NP genes. Genetic analysis indicated that A/equine/Pakistan/16 viruses were most probably the result of several re-assortments between the co-circulating avian and equine viruses, and were genetically unlike the other equine viruses due to the presence of H7N3 or H3N2 like M and NP genes.

    CONCLUSION: Epidemiological data analysis indicated the potential chance of mixed, and management such as mixed farming system by keeping equine, canine and backyard poultry together in confined premises as the greater risk factors responsible for the re-assortments. Other factors might have contributed to the spread of the epidemic, including low awareness level, poor control of equine movements, and absence of border control disease strategies.

  19. Ishikawa T, Abe M, Masuda M
    Virus Res, 2015 Jan 2;195:153-61.
    PMID: 25451067 DOI: 10.1016/j.virusres.2014.10.010
    Japanese encephalitis virus (JEV) genotype V was originally isolated in Malaysia in 1952 and has long been restricted to the area. In 2009, sudden emergence of the genotype V in China and Korea was reported, suggesting expansion of its geographical distribution. Although studies on the genotype V are becoming more important, they have been limited partly due to lack of its infectious molecular clone. In this study, a plasmid carrying cDNA corresponding to the entire genome of JEV Muar strain, which belongs to genotype V, in the downstream of T7 promoter was constructed. Electroporation of viral RNA transcribed by T7 RNA polymerase (T7RNAP) in vitro from the plasmid led to production of progeny viruses both in mammalian and mosquito cells. Also, transfection of the infectious clone plasmid into mammalian cells expressing T7RNAP transiently or stably was demonstrated to generate infectious progenies. When the viral structural protein genes were partially deleted from the full-length cDNA, the subgenomic RNA transcribed in vitro from the modified plasmid was shown to replicate itself in mammalian cells as a replicon. The replicon carrying the firefly luciferase gene in place of the deleted structural protein genes was also shown to efficiently replicate itself and express luciferase in mammalian cells. Compared with the replicon derived from JEV genotype III (Nakayama strain), the genotype V-derived replicon appeared to be more tolerant to introduction of a foreign gene. The infectious clone and the replicons constructed in this study may serve as useful tools for characterizing JEV genotype V.
  20. Al-Obaidi MMJ, Bahadoran A, Har LS, Mui WS, Rajarajeswaran J, Zandi K, et al.
    Virus Res, 2017 04 02;233:17-28.
    PMID: 28279803 DOI: 10.1016/j.virusres.2017.02.012
    Japanese encephalitis (JE) is a neurotropic flavivirus that causes inflammation in central nervous system (CNS), neuronal death and also compromises the structural and functional integrity of the blood-brain barrier (BBB). The aim of this study was to evaluate the BBB disruption and apoptotic process in Japanese encephalitis virus (JEV)-infected transfected human brain microvascular endothelial cells (THBMECs). THBMECs were overlaid by JEV with different MOIs (0.5, 1.0, 5.0 and 10.0) and monitored by electrical cell-substrate impedance sensing (ECIS) in a real-time manner in order to observe the barrier function of THBMECs. Additionally, the level of 43 apoptotic proteins was quantified in the virally infected cells with different MOIs at 24h post infection. Infection of THBMEC with JEV induced an acute reduction in transendothelial electrical resistance (TEER) after viral infection. Also, significant up-regulation of Bax, BID, Fas and Fasl and down-regulation of IGFBP-2, BID, p27 and p53 were observed in JEV infected THBMECs with 0.5 and 10 MOIs compared to uninfected cells. Hence, the permeability of THBMECs is compromised during the JEV infection. In addition high viral load of the virus has the potential to subvert the host cell apoptosis to optimize the course of viral infection through deactivation of pro-apoptotic proteins.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links