Displaying all 2 publications

Abstract:
Sort:
  1. Hai T, Basem A, Alizadeh A, Sharma K, Jasim DJ, Rajab H, et al.
    Sci Rep, 2024 Nov 27;14(1):29524.
    PMID: 39604527 DOI: 10.1038/s41598-024-81044-3
    Optimization of thermophysical properties (TPPs) of MXene-based nanofluids is essential to increase the performance of hybrid solar photovoltaic and thermal (PV/T) systems. This study proposes a hybrid approach to optimize the TPPs of MXene-based Ionanofluids. The input variables are the MXene mass fraction (MF) and temperature. The optimization objectives include three TPPs: specific heat capacity (SHC), dynamic viscosity (DV), and thermal conductivity (TC). In the proposed hybrid approach, the powerful group method of data handling (GMDH)-type ANN technique is used to model TPPs in terms of input variables. The obtained models are integrated into the multi-objective particle swarm optimization (MOPSO) and multi-objective thermal exchange optimization (MOTEO) algorithms, forming a three-objective optimization problem. In the final step, the TOPSIS technique, one of the well-known multi-criteria decision-making (MCDM) approaches, is employed to identify the desirable Pareto points. Modeling results showed that the developed models for TC, DV, and SHC demonstrate a strong performance by R-values of 0.9984, 0.9985, and 0.9987, respectively. The outputs of MOPSO revealed that the Pareto points dispersed a broad range of MXene MFs (0-0.4%). However, the temperature of these optimal points was found to be constrained within a narrow range near the maximum value (75 °C). In scenarios where TC precedes other objectives, the TOPSIS method recommended utilizing an MF of over 0.2%. Alternatively, when DV holds greater importance, decision-makers can opt for an MF ranging from 0.15 to 0.17%. Also, when SHC becomes the primary concern, TOPSIS advised utilizing the base fluid without any MXene additive.
  2. Hai T, Basem A, Alizadeh A, Singh PK, Rajab H, Maatki C, et al.
    Sci Rep, 2025 Jan 15;15(1):1986.
    PMID: 39814861 DOI: 10.1038/s41598-025-85236-3
    The performance of nanofluids is largely determined by their thermophysical properties. Optimizing these properties can significantly enhance nanofluid performance. This study introduces a hybrid strategy based on computational intelligence to determine the optimal conditions for ternary hybrid nanofluids. The goal is to minimize dynamic viscosity and maximize thermal conductivity by varying the volume fraction, temperature, and nanomaterial mixing ratio. The proposed strategy integrates machine learning, multi-objective optimization, and multi-criteria decision-making. Three machine learning techniques-GMDH-type neural network, gene expression programming, and combinatorial algorithm-are applied to model dynamic viscosity and thermal conductivity as functions of the input variables. Then, the high-performing models provide the foundation for optimization using the well-established multi-objective particle swarm optimization algorithm. Finally, the decision-making technique TOPSIS is employed to identify the most desirable points from the Pareto front, based on various design scenarios. To validate the proposed strategy, a ternary hybrid nanofluid composed of graphene oxide (GO), iron oxide (Fe₃O₄), and titanium dioxide (TiO₂) was employed as a case study. The results demonstrated that the combinatorial approach excelled in accurately modeling (R = 0.99964-0.99993). The optimization process revealed that optimal VFs span a broad range across all mixing ratios, while optimal temperatures were consistently near the maximum value (65 °C). The decision-making outcomes indicated that the mixing ratio was consistent across all design scenarios, with the volume fraction serving as the key differentiating factor.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links