The development of a Digital Intelligence Quotient (DQ) scale for primary school students is the basis for research on the DQ of primary school students, which helps to scientifically diagnose the level and the current average DQ among Chinese primary school students. This study developed and validated a scale applicable to the assessment of DQ in Chinese primary school students where, the initial scale was first constructed; Then 1109 valid datasets were collected through purposive sampling and divided into Sample A and Sample B; Sample A was subjected to exploratory factor analysis and Sample B was tested by confirmatory factor analysis; The final validated scale consists of 22 items in 7 dimensions: digital identity, digital use, digital safety, digital security, digital emotional intelligence, digital literacy and digital rights. The scale has high reliability and validity and thus can be used as a reliable instrument for assessing DQ in Chinese primary school students.
Food loss or waste is a far-reaching problem and has indeed become a worrying issue that is growing at an alarming rate. Fruits and vegetables are lost or wasted at the highest rate among the composition of food waste. Furthermore, the world is progressing toward sustainable development; hence, an efficient approach to valorise fruit and vegetable waste (FVW) is necessary. A simple phenotypic characterisation of microbiota isolated from the fermented FVW was conducted, and its effectiveness toward wastewater treatment was investigated. Presumptive identification suggested that yeast is dominant in this study, accounting for 85% of total isolates. At the genus level, the enriched medium's microbial community consists of Saccharomyces, Bacillus and Candida. Ammonium in the wastewater can enhance certain bacteria to grow, such as lactic acid bacteria, resulting in decreased NH4+ concentration at the end of the treatment to 0.5 mg/L. In addition, the fermented biowaste could reduce PO43- by 90% after the duration of treatment. Overall, FVW is a valuable microbial resource, and the microbial population enables a reduction in organic matter such as NH4+ and PO43-. This study helps explore the function and improve the effectiveness of utilising biowaste by understanding the microorganisms responsible for producing eco-enzyme.