Displaying all 4 publications

Abstract:
Sort:
  1. Khalivulla SI, Mohammed A, Sirajudeen KNS, Shaik MI, Ye W, Korivi M
    Curr Drug Metab, 2019;20(12):946-957.
    PMID: 31744445 DOI: 10.2174/1389200220666191118102616
    BACKGROUND: Typhonium is the largest genus in the Araceae family (~70 species), distributed in South Asia, Southeast Asia and Australia. Typhonium is well-known for its ethnopharmacological uses, and Southeast Asians consider it as an alternative medicine to treat cancer. This review elucidated the confirmed chemical structures of the isolated compounds of Typhonium and emphasized on their anticancer activities against various human cancer cells.

    METHODS: Among several species, Typhonium blumei, T. flagelliforme, T. divaricatum and T. giganteum were extensively studied due to the presence of a class of secondary metabolites. All the available reports on Typhonium were included and discussed in this article.

    RESULTS: Until now several groups of compounds, namely amino acids (1, 2), cinnamic acid (3), fatty acids (4-14), glycerol derivatives (15-18) and cerebrosides (19-34), flavonoids (35), hydantoins (36-38), lignin monomers (39-44), nucleobases (45-48), pheophorbides (49-52), phthalate (53), terpene and steroids (54-59) and vitamins (60, 61) were isolated and characterized from Typhonium. These phytochemicals were investigated for their anticancer properties, and results confirmed the promising growth inhibitory effect and anticancer activities against human lung, breast, prostate and colon cancer cells. The anticancer activity of these compounds appears to be mediated through the induction of apoptotic cell death. These phytochemicals further reported to exhibit other pharmacological efficacies, including anti-inflammatory, antioxidant, antiviral, anti-allergic, neuroprotective and hepato-protective properties.

    CONCLUSION: This is the first review to summarize the anticancer properties of all isolated compounds of Typhonium genus with confirmed chemical structures. Further advanced studies are necessary to establish the detailed signaling pathways that are involved in the anticancer property of the compounds.

  2. Liu Y, Hong F, Lebaka VR, Mohammed A, Ji L, Zhang Y, et al.
    Front Physiol, 2021;12:754731.
    PMID: 34867458 DOI: 10.3389/fphys.2021.754731
    Background/Purpose: In this systematic review and meta-analysis, we assessed the effects of exercise (EX) combined with calorie restriction (CR) intervention on inflammatory biomarkers, and correlations between biomarkers and participants' characteristics were calculated in overweight and obese adults. Methods: An article search was conducted through PubMed, Web of Science, EMBASE, the Cochrane database, Scopus, and Google Scholar to identify articles published up to April 2021. Studies that examined the effect of EX + CR intervention on inflammatory biomarkers, including C-reactive protein (CRP), interleukin-6 (IL-6), and tumor necrosis factor-alpha (TNF-α), and compared them with a CR trial in overweight and obese adults were included. We calculated the pooled effect by meta-analysis, identified the correlations (between inflammatory biomarkers and participants' characteristics) through meta-regression, and explored the beneficial variable through subgroup analysis. The Cochrane risk of bias tool and Methodological Index for Non-randomized Studies were used to assess the risk of bias for the included trials. Results: A total of 23 trials, including 1196 overweight and obese adults, were included in the meta-analysis. The pooled effect showed that EX + CR intervention significantly decreased CRP levels (P = 0.02), but had no effect on IL-6 (P = 0.62) and TNF-α (P = 0.11). Meta-regression analysis showed that the effect of EX + CR on CRP, IL-6, and TNF-α changes was correlated with lifestyle behavior of adults (Coef. = -0.380, P = 0.018; Coef. = -0.359, P = 0.031; Coef. = -0.424, P = 0.041, respectively), but not with age and BMI. The subgroup analysis results revealed that participants with sedentary lifestyle behavior did not respond to EX + CR intervention, as we found no changes in CRP, IL-6, and TNF-α concentrations (P = 0.84, P = 0.16, P = 0.92, respectively). However, EX + CR intervention significantly decreased CRP (P = 0.0003; SMD = -0.39; 95%CI: -0.60 to -0.18), IL-6 (P = 0.04; SMD = -0.21; 95%CI: -0.40 to -0.01) and TNF-α (P = 0.006; SMD = -0.40, 95%CI: -0.68 to -0.12) in adults without a sedentary lifestyle or with a normal lifestyle. Furthermore, the values between sedentary and normal lifestyle subgroups were statistically significant for CRP, IL-6, and TNF-α. Conclusion: Our findings showed that combination EX + CR intervention effectively decreased CRP, IL-6, and TNF-α in overweight and obese adults with active lifestyles, but not with sedentary lifestyle behavior. We suggest that 'lifestyle behavior' is a considerable factor when designing new intervention programs for overweight or obese adults to improve their inflammatory response.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links