Displaying all 4 publications

Abstract:
Sort:
  1. Danov KD, Stanimirova RD, Kralchevsky PA, Basheva ES, Ivanova VI, Petkov JT
    J Colloid Interface Sci, 2015 Nov 1;457:307-18.
    PMID: 26196714 DOI: 10.1016/j.jcis.2015.07.020
    The interest to sulfonated methyl esters of fatty acids (SME) has been growing during the last decade, because these surfactants are considered as an environmentally friendly and renewable alternative of the linear alkyl-benzene sulfonates (LAS). Here, we present a quantitative study on the properties of aqueous SME solutions, and especially on their surface tension isotherms, critical micelle concentration (CMC) and its dependence on the concentration of added NaCl. It is demonstrated that the CMC of an ionic surfactant determined by electrical conductivity is insensitive to the presence of a small nonionic admixture, so that the CMC values determined by conductivity represent the CMC of the pure surfactant. Using SME as an example, we have demonstrated the application of a new and powerful method for determining the physicochemical parameters of the pure ionic surfactant by theoretical data analysis ("computer purification") if the used surfactant sample contains nonionic admixtures, which are present as a rule. This method involves fits of the experimental data for surface tension and conductivity by a physicochemical model based on a system of mass-balance, chemical-equilibrium and electric-double-layer equations, which allows us to determine the adsorption and micellization parameters of C12-, C14-, C16- and C18-SME, as well the fraction of nonionic admixtures (if any). Having determined these parameters, we can further predict the interfacial and micellization properties of the surfactant solutions, such as surface tension, adsorption, degree of counterion binding, and surface electric potential at every surfactant, salt and co-surfactant concentrations.
  2. Basheva ES, Danov KD, Radulova GM, Kralchevsky PA, Xu H, Ung YW, et al.
    J Colloid Interface Sci, 2019 Mar 07;538:660-670.
    PMID: 30572230 DOI: 10.1016/j.jcis.2018.12.034
    HYPOTHESES: The micellar solutions of sulfonated methyl esters (SME) are expected to form stratifying foam films that exhibit stepwise thinning. From the height of the steps, which are engendered by micellar layers confined in the films, we could determine the micelle aggregation number, surface electric potential, and ionization degree. Moreover, addition of the zwitterionic surfactant cocamidopropyl betaine (CAPB) is expected to transform the small spherical micelles of SME into giant wormlike aggregates.

    EXPERIMENTS: Stratifying films from SME solutions are formed and the heights of the steps are recorded. The viscosity of mixed SME + CAPB solutions is measured at various concentrations and weight ratios of the two surfactants.

    FINDINGS: By theoretical analysis of the foam film data, we established that at 30-100 mM SME spherical micelles are formed and their aggregation number was determined. The addition of calcium ions, as in hard water, does not produce significant effect. However, SME and CAPB exhibit a strong synergism with respect to micelle growth as indicated by the high solution's viscosity. For this reason, the SME + CAPB mixtures represent a promising system for formulations in personal-care and house-hold detergency, having in mind also other useful properties of SME, such as high hard water tolerance, biodegradability and skin compatibility.

  3. Yavrukova VI, Radulova GM, Danov KD, Kralchevsky PA, Xu H, Ung YW, et al.
    Adv Colloid Interface Sci, 2020 Jan;275:102062.
    PMID: 31718784 DOI: 10.1016/j.cis.2019.102062
    This is a review article on the rheological properties of mixed solutions of sulfonated methyl esters (SME) and cocamidopropyl betaine (CAPB), which are related to the synergistic growth of giant micelles. Effects of additives, such as fatty alcohols, cocamide monoethanolamine (CMEA) and salt, which are expected to boost the growth of wormlike micelles, are studied. We report and systematize the most significant observed effects with an emphasis on the interpretation at molecular level and understanding the rheological behavior of these systems. The experiments show that the mixing of SME and CAPB produces a significant rise of viscosity, which is greater than in the mixed solutions of sodium dodecyl sulfate and CAPB. The addition of fatty alcohols, CMEA and cationic polymer, leads to broadening of the synergistic peak in viscosity without any pronounced effect on its height. The addition of NaCl leads to a typical salt curve with high maximum, but in the presence of dodecanol this maximum is much lower. At lower salt concentrations, the fatty alcohol acts as a thickener, whereas at higher salt concentrations - as a thinning agent. Depending on the shape of the frequency dependences of the measured storage and loss moduli, G' and G", the investigated micellar solutions behave as systems of standard or nonstandard rheological behavior. The systems with standard behavior obey the Maxwell viscoelastic model (at least) up to the crossover point (G' = G") and can be analyzed in terms of the Cates reptation-reaction model. The systems with nonstandard rheological behavior obey the Maxwell model only in a restricted domain below the crossover frequency; they can be analyzed in the framework of an augmented version of the Maxwell model. The methodology for data analysis and interpretation could be applied to any other viscoelastic micellar system.
  4. Danov KD, Stanimirova RD, Kralchevsky PA, Slavova TG, Yavrukova VI, Ung YW, et al.
    J Colloid Interface Sci, 2021 Nov;601:474-485.
    PMID: 34090025 DOI: 10.1016/j.jcis.2021.05.147
    HYPOTHESIS: Many ionic surfactants with wide applications in personal-care and house-hold detergency show limited water solubility at lower temperatures (Krafft point). This drawback can be overcome by using mixed solutions, where the ionic surfactant is incorporated in mixed micelles with another surfactant, which is soluble at lower temperatures.

    EXPERIMENTS: The solubility and electrolytic conductivity for a binary surfactant mixture of anionic methyl ester sulfonates (MES) with nonionic alkyl polyglucoside and alkyl polyoxyethylene ether at 5 °C during long-term storage were measured. Phase diagrams were established; a general theoretical model for their explanation was developed and checked experimentally.

    FINDINGS: The binary and ternary phase diagrams for studied surfactant mixtures include phase domains: mixed micelles; micelles + crystallites; crystallites, and molecular solution. The proposed general methodology, which utilizes the equations of molecular thermodynamics at minimum number of experimental measurements, is convenient for construction of such phase diagrams. The results could increase the range of applicability of MES-surfactants with relatively high Krafft temperature, but with various useful properties such as excellent biodegradability and skin compatibility; stability in hard water; good wetting and cleaning performance.

Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links