EXPERIMENTS: Stratifying films from SME solutions are formed and the heights of the steps are recorded. The viscosity of mixed SME + CAPB solutions is measured at various concentrations and weight ratios of the two surfactants.
FINDINGS: By theoretical analysis of the foam film data, we established that at 30-100 mM SME spherical micelles are formed and their aggregation number was determined. The addition of calcium ions, as in hard water, does not produce significant effect. However, SME and CAPB exhibit a strong synergism with respect to micelle growth as indicated by the high solution's viscosity. For this reason, the SME + CAPB mixtures represent a promising system for formulations in personal-care and house-hold detergency, having in mind also other useful properties of SME, such as high hard water tolerance, biodegradability and skin compatibility.
EXPERIMENTS: The solubility and electrolytic conductivity for a binary surfactant mixture of anionic methyl ester sulfonates (MES) with nonionic alkyl polyglucoside and alkyl polyoxyethylene ether at 5 °C during long-term storage were measured. Phase diagrams were established; a general theoretical model for their explanation was developed and checked experimentally.
FINDINGS: The binary and ternary phase diagrams for studied surfactant mixtures include phase domains: mixed micelles; micelles + crystallites; crystallites, and molecular solution. The proposed general methodology, which utilizes the equations of molecular thermodynamics at minimum number of experimental measurements, is convenient for construction of such phase diagrams. The results could increase the range of applicability of MES-surfactants with relatively high Krafft temperature, but with various useful properties such as excellent biodegradability and skin compatibility; stability in hard water; good wetting and cleaning performance.