Displaying all 8 publications

Abstract:
Sort:
  1. Namazi H, Kulish VV
    Comput Math Methods Med, 2015;2015:148534.
    PMID: 26089955 DOI: 10.1155/2015/148534
    Human brain response is the result of the overall ability of the brain in analyzing different internal and external stimuli and thus making the proper decisions. During the last decades scientists have discovered more about this phenomenon and proposed some models based on computational, biological, or neuropsychological methods. Despite some advances in studies related to this area of the brain research, there were fewer efforts which have been done on the mathematical modeling of the human brain response to external stimuli. This research is devoted to the modeling and prediction of the human EEG signal, as an alert state of overall human brain activity monitoring, upon receiving external stimuli, based on fractional diffusion equations. The results of this modeling show very good agreement with the real human EEG signal and thus this model can be used for many types of applications such as prediction of seizure onset in patient with epilepsy.
  2. Namazi H, Kulish VV, Wong A
    Sci Rep, 2015;5:13583.
    PMID: 26316014 DOI: 10.1038/srep13583
    Cancer is a class of diseases characterized by out-of-control cells' growth which affect DNAs and make them damaged. Many treatment options for cancer exist, with the primary ones including surgery, chemotherapy, radiation therapy, hormonal therapy, targeted therapy and palliative care. Which treatments are used depends on the type, location, and grade of the cancer as well as the person's health and wishes. Chemotherapy is the use of medication (chemicals) to treat disease. More specifically, chemotherapy typically refers to the destruction of cancer cells. Considering the diffusion of drugs in cancer cells and fractality of DNA walks, in this research we worked on modelling and prediction of the effect of chemotherapy on cancer cells using Fractional Diffusion Equation (FDE). The employed methodology is useful not only for analysis of the effect of special drug and cancer considered in this research but can be expanded in case of different drugs and cancers.
  3. Babini MH, Kulish VV, Namazi H
    J Med Internet Res, 2020 06 01;22(6):e17945.
    PMID: 32478661 DOI: 10.2196/17945
    BACKGROUND: Education and learning are the most important goals of all universities. For this purpose, lecturers use various tools to grab the attention of students and improve their learning ability. Virtual reality refers to the subjective sensory experience of being immersed in a computer-mediated world, and has recently been implemented in learning environments.

    OBJECTIVE: The aim of this study was to analyze the effect of a virtual reality condition on students' learning ability and physiological state.

    METHODS: Students were shown 6 sets of videos (3 videos in a two-dimensional condition and 3 videos in a three-dimensional condition), and their learning ability was analyzed based on a subsequent questionnaire. In addition, we analyzed the reaction of the brain and facial muscles of the students during both the two-dimensional and three-dimensional viewing conditions and used fractal theory to investigate their attention to the videos.

    RESULTS: The learning ability of students was increased in the three-dimensional condition compared to that in the two-dimensional condition. In addition, analysis of physiological signals showed that students paid more attention to the three-dimensional videos.

    CONCLUSIONS: A virtual reality condition has a greater effect on enhancing the learning ability of students. The analytical approach of this study can be further extended to evaluate other physiological signals of subjects in a virtual reality condition.

  4. Pakniyat N, Babini MH, Kulish VV, Namazi H
    Technol Health Care, 2021 Aug 13.
    PMID: 34397441 DOI: 10.3233/THC-213136
    BACKGROUND: Analysis of the heart activity is one of the important areas of research in biomedical science and engineering. For this purpose, scientists analyze the activity of the heart in various conditions. Since the brain controls the heart's activity, a relationship should exist among their activities.

    OBJECTIVE: In this research, for the first time the coupling between heart and brain activities was analyzed by information-based analysis.

    METHODS: Considering Shannon entropy as the indicator of the information of a system, we recorded electroencephalogram (EEG) and electrocardiogram (ECG) signals of 13 participants (7 M, 6 F, 18-22 years old) in different external stimulations (using pineapple, banana, vanilla, and lemon flavors as olfactory stimuli) and evaluated how the information of EEG signals and R-R time series (as heart rate variability (HRV)) are linked.

    RESULTS: The results indicate that the changes in the information of the R-R time series and EEG signals are strongly correlated (ρ=-0.9566).

    CONCLUSION: We conclude that heart and brain activities are related.

  5. Namazi H, Kulish VV, Wong A, Nazeri S
    Biomed Res Int, 2016;2016:8437247.
    PMID: 27376087 DOI: 10.1155/2016/8437247
    Cancer is a class of diseases characterized by out-of-control cells' growth which affect cells and make them damaged. Many treatment options for cancer exist. Chemotherapy as an important treatment option is the use of drugs to treat cancer. The anticancer drug travels to the tumor and then diffuses in it through capillaries. The diffusion of drugs in the solid tumor is limited by penetration depth which is different in case of different drugs and cancers. The computation of this depth is important as it helps physicians to investigate about treatment of infected tissue. Although many efforts have been made on studying and measuring drug penetration depth, less works have been done on computing this length from a mathematical point of view. In this paper, first we propose phase lagging model for diffusion of drug in the tumor. Then, using this model on one side and considering the classic diffusion on the other side, we compute the drug penetration depth in the solid tumor. This computed value of drug penetration depth is corroborated by comparison with the values measured by experiments.
  6. Namazi H, Akrami A, Nazeri S, Kulish VV
    Biomed Res Int, 2016;2016:5469587.
    PMID: 27699169
    An important challenge in brain research is to make out the relation between the features of olfactory stimuli and the electroencephalogram (EEG) signal. Yet, no one has discovered any relation between the structures of olfactory stimuli and the EEG signal. This study investigates the relation between the structures of EEG signal and the olfactory stimulus (odorant). We show that the complexity of the EEG signal is coupled with the molecular complexity of the odorant, where more structurally complex odorant causes less fractal EEG signal. Also, odorant having higher entropy causes the EEG signal to have lower approximate entropy. The method discussed here can be applied and investigated in case of patients with brain diseases as the rehabilitation purpose.
  7. Namazi H, Kulish VV, Hussaini J, Hussaini J, Delaviz A, Delaviz F, et al.
    Oncotarget, 2016 Jan 5;7(1):342-50.
    PMID: 26586477 DOI: 10.18632/oncotarget.6341
    One of the main areas of behavioural neuroscience is forecasting the human behaviour. Epilepsy is a central nervous system disorder in which nerve cell activity in the brain becomes disrupted, causing seizures or periods of unusual behaviour, sensations and sometimes loss of consciousness. An estimated 5% of the world population has epileptic seizure but there is not any method to cure it. More than 30% of people with epilepsy cannot control seizure. Epileptic seizure prediction, refers to forecasting the occurrence of epileptic seizures, is one of the most important but challenging problems in biomedical sciences, across the world. In this research we propose a new methodology which is based on studying the EEG signals using two measures, the Hurst exponent and fractal dimension. In order to validate the proposed method, it is applied to epileptic EEG signals of patients by computing the Hurst exponent and fractal dimension, and then the results are validated versus the reference data. The results of these analyses show that we are able to forecast the onset of a seizure on average of 25.76 seconds before the time of occurrence.
  8. Namazi H, Khosrowabadi R, Hussaini J, Habibi S, Farid AA, Kulish VV
    Oncotarget, 2016 Aug 30;7(35):56120-56128.
    PMID: 27528219 DOI: 10.18632/oncotarget.11234
    One of the major challenges in brain research is to relate the structural features of the auditory stimulus to structural features of Electroencephalogram (EEG) signal. Memory content is an important feature of EEG signal and accordingly the brain. On the other hand, the memory content can also be considered in case of stimulus. Beside all works done on analysis of the effect of stimuli on human EEG and brain memory, no work discussed about the stimulus memory and also the relationship that may exist between the memory content of stimulus and the memory content of EEG signal. For this purpose we consider the Hurst exponent as the measure of memory. This study reveals the plasticity of human EEG signals in relation to the auditory stimuli. For the first time we demonstrated that the memory content of an EEG signal shifts towards the memory content of the auditory stimulus used. The results of this analysis showed that an auditory stimulus with higher memory content causes a larger increment in the memory content of an EEG signal. For the verification of this result, we benefit from approximate entropy as indicator of time series randomness. The capability, observed in this research, can be further investigated in relation to human memory.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links