MATERIALS AND METHODS: The ethanolic extract was used to synthesise copper nanoparticles. The copper nanoparticles were successfully synthesised from copper sulphate solution which was identified by the colour change from dark green colour of the extract. Thus the B.oleracea var acephala is a good source to synthesis copper nanoparticles. The synthesised copper nanoparticles were characterised using Scanning Electron Microscope (SEM) analysis. The SEM image displayed the high-density nanoparticles synthesised by leaf extracts and that the nanoparticles were crystals in shape.
RESULTS: The copper nanoparticles (CNP) bind to the leaf extract. B.oleracea var acephala also has shown the antimicrobial and antioxidant activity. A comparative study was done between ethanolic its crude extract and nanoparticles. Both extracts exhibited zone of inhibition and better antioxidant potential but the CuNPs shows major zone of inhibition and showed more antioxidant activity. Anticancer activity of B.oleracea var acephala against Cervical HeLa cell line was confirmed using ethanolic crude extract and CNP. The results showed that HeLa cells proliferation was inhibited with increasing concentration of ethanolic crude extract and copper nanoparticles. From the results, it was seen that percentage viability of the cancer cells decreased with increased concentration of the samples whereas cytotoxicity against HeLa cell lines increased with the increased concentration of the samples.
CONCLUSION: Thus B.oleracea var acephala possesses anticancer activity against HeLa cell lines.
Methods: SPIONs were synthesized by co-precipitation method and further coated with a biopolymer, chitosan. Chromium solution was treated with the synthesized SPIONs to study the efficiency of chromium removal by surface adsorption. Later, the adsorption was analysed by direct and indirect analysis methods using UV-VIS spectrophotometry and isotherm studies.
Results: Stable chitosan-coated SPIONs were synthesized and they adsorbed chromium better than the uncoated SPIONs, where it was adsorbing up to 100 ppm. Adsorption was found to be increasing with decrease in pH.
Conclusion: The surface-modified SPIONs expressed cumulative adsorption action. Even after the adsorption studies, chitosan-coated SPIONs were possessing magnetic property. Thus, the surface-modified SPIONs can become an ideal nanotechnology tool to remove the chromium from groundwater.