OBJECTIVES: To assess the effectiveness of school dental screening programmes on overall oral health status and use of dental services.
SEARCH METHODS: Cochrane Oral Health's Information Specialist searched the following databases: Cochrane Oral Health's Trials Register (to 15 March 2017), the Cochrane Central Register of Controlled Trials (CENTRAL, the Cochrane Register of Studies, to 15 March 2017), MEDLINE Ovid (1946 to 15 March 2017), and Embase Ovid (15 September 2016 to 15 March 2017). The US National Institutes of Health Trials Registry (ClinicalTrials.gov) and the World Health Organization International Clinical Trials Registry Platform were searched for ongoing trials. No restrictions were placed on language or publication status when searching the electronic databases; however, the search of Embase was restricted to the last six months due to the Cochrane Centralised Search Project to identify all clinical trials and add them to CENTRAL.
SELECTION CRITERIA: We included randomised controlled trials (RCTs) (cluster or parallel) that evaluated school dental screening compared with no intervention or with one type of screening compared with another.
DATA COLLECTION AND ANALYSIS: We used standard methodological procedures expected by Cochrane.
MAIN RESULTS: We included six trials (four were cluster-RCTs) with 19,498 children who were 4 to 15 years of age. Four trials were conducted in the UK and two were based in India. We assessed two trials to be at low risk of bias, one trial to be at high risk of bias and three trials to be at unclear risk of bias.None of the six trials reported the proportion of children with untreated caries or other oral diseases.Four trials evaluated traditional screening versus no screening. We performed a meta-analysis for the outcome 'dental attendance' and found an inconclusive result with high heterogeneity. The heterogeneity was found it to be, in part, due to study design (three cluster-RCTs and one individual-level RCT). Due to the inconsistency, we downgraded the evidence to 'very low certainty' and are unable to draw conclusions about this comparison.Two cluster-RCTs (both four-arm trials) evaluated criteria-based screening versus no screening and showed a pooled effect estimate of RR 1.07 (95% CI 0.99 to 1.16), suggesting a possible benefit for screening (low-certainty evidence). There was no evidence of a difference when criteria-based screening was compared to traditional screening (RR 1.01, 95% CI 0.94 to 1.08) (very low-certainty evidence).In one trial, a specific (personalised) referral letter was compared to a non-specific one. Results favoured the specific referral letter with an effect estimate of RR 1.39 (95% CI 1.09 to 1.77) for attendance at general dentist services and effect estimate of RR 1.90 (95% CI 1.18 to 3.06) for attendance at specialist orthodontist services (low-certainty evidence).One trial compared screening supplemented with motivation to screening alone. Dental attendance was more likely after screening supplemented with motivation, with an effect estimate of RR 3.08 (95% CI 2.57 to 3.71) (low-certainty evidence).None of the trials had long-term follow-up to ascertain the lasting effects of school dental screening.None of the trials reported cost-effectiveness and adverse events.
AUTHORS' CONCLUSIONS: The trials included in this review evaluated short-term effects of screening, assessing follow-up periods of three to eight months. We found very low certainty evidence that was insufficient to allow us to draw conclusions about whether there is a role for traditional school dental screening in improving dental attendance. For criteria-based screening, we found low-certainty evidence that it may improve dental attendance when compared to no screening. However, when compared to traditional screening there was no evidence of a difference in dental attendance (very low-certainty evidence).We found low-certainty evidence to conclude that personalised or specific referral letters improve dental attendance when compared to non-specific counterparts. We also found low-certainty evidence that screening supplemented with motivation (oral health education and offer of free treatment) improves dental attendance in comparison to screening alone.We did not find any trials addressing cost-effectiveness and adverse effects of school dental screening.
OBJECTIVES: To assess the effectiveness of school dental screening programmes on overall oral health status and use of dental services.
SEARCH METHODS: An information specialist searched four bibliographic databases up to 15 October 2021 and used additional search methods to identify published, unpublished and ongoing studies.
SELECTION CRITERIA: We included randomised controlled trials (RCTs; cluster- or individually randomised) that evaluated school dental screening compared with no intervention, or that compared two different types of screening.
DATA COLLECTION AND ANALYSIS: We used standard methodological procedures expected by Cochrane.
MAIN RESULTS: The previous version of this review included seven RCTs, and our updated search identified one additional trial. Therefore, this update included eight trials (six cluster-RCTs) with 21,290 children aged 4 to 15 years. Four trials were conducted in the UK, two in India, one in the USA and one in Saudi Arabia. We rated two trials at low risk of bias, three at high risk of bias and three at unclear risk of bias. No trials had long-term follow-up to ascertain the lasting effects of school dental screening. The trials assessed outcomes at 3 to 11 months of follow-up. No trials reported the proportion of children with treated or untreated oral diseases other than caries. Neither did they report on cost-effectiveness or adverse events. Four trials evaluated traditional screening versus no screening. We performed a meta-analysis for the outcome 'dental attendance' and found an inconclusive result with high heterogeneity. The heterogeneity was partly due to study design (three cluster-RCTs and one individually randomised trial). Due to this inconsistency, and unclear risk of bias, we downgraded the evidence to very low certainty, and we are unable to draw conclusions about this comparison. Two cluster-RCTs (both four-arm trials) evaluated criteria-based screening versus no screening, suggesting a possible small benefit (pooled risk ratio (RR) 1.07, 95% confidence interval (CI) 0.99 to 1.16; low-certainty evidence). There was no evidence of a difference when comparing criteria-based screening to traditional screening (RR 1.01, 95% CI 0.94 to 1.08; very low-certainty evidence). One trial compared a specific (personalised) referral letter to a non-specific letter. Results favoured the specific referral letter for increasing attendance at general dentist services (RR 1.39, 95% CI 1.09 to 1.77; very low-certainty evidence) and attendance at specialist orthodontist services (RR 1.90, 95% CI 1.18 to 3.06; very low-certainty evidence). One trial compared screening supplemented with motivation to screening alone. Dental attendance was more likely after screening supplemented with motivation (RR 3.08, 95% CI 2.57 to 3.71; very low-certainty evidence). One trial compared referral to a specific dental treatment facility with advice to attend a dentist. There was no evidence of a difference in dental attendance between these two referrals (RR 0.91, 95% CI 0.34 to 2.47; very low-certainty evidence). Only one trial reported the proportion of children with treated dental caries. This trial evaluated a post-screening referral letter based on the common-sense model of self-regulation (a theoretical framework that explains how people understand and respond to threats to their health), with or without a dental information guide, compared to a standard referral letter. The findings were inconclusive. Due to high risk of bias, indirectness and imprecision, we assessed the evidence as very low certainty.
AUTHORS' CONCLUSIONS: The evidence is insufficient to draw conclusions about whether there is a role for school dental screening in improving dental attendance. We are uncertain whether traditional screening is better than no screening (very low-certainty evidence). Criteria-based screening may improve dental attendance when compared to no screening (low-certainty evidence). However, when compared to traditional screening, there is no evidence of a difference in dental attendance (very low-certainty evidence). For children requiring treatment, personalised or specific referral letters may improve dental attendance when compared to non-specific referral letters (very low-certainty evidence). Screening supplemented with motivation (oral health education and offer of free treatment) may improve dental attendance in comparison to screening alone (very low-certainty evidence). We are uncertain whether a referral letter based on the 'common-sense model of self-regulation' is better than a standard referral letter (very low-certainty evidence) or whether specific referral to a dental treatment facility is better than a generic advice letter to visit the dentist (very low-certainty evidence). The trials included in this review evaluated effects of school dental screening in the short term. None of them evaluated its effectiveness for improving oral health or addressed possible adverse effects or costs.
OBJECTIVES: To assess the effectiveness of school dental screening programmes on overall oral health status and use of dental services.
SEARCH METHODS: Cochrane Oral Health's Information Specialist searched the following databases: Cochrane Oral Health's Trials Register (to 4 March 2019), the Cochrane Central Register of Controlled Trials (CENTRAL, the Cochrane Register of Studies, to 4 March 2019), MEDLINE Ovid (1946 to 4 March 2019), and Embase Ovid (15 September 2016 to 4 March 2019). The US National Institutes of Health Trials Registry (ClinicalTrials.gov) and the World Health Organization International Clinical Trials Registry Platform were searched for ongoing trials. No restrictions were placed on language or publication status when searching the electronic databases; however, the search of Embase was restricted to the last six months due to the Cochrane Centralised Search Project to identify all clinical trials and add them to CENTRAL.
SELECTION CRITERIA: We included randomised controlled trials (RCTs) (cluster or parallel) that evaluated school dental screening compared with no intervention or with one type of screening compared with another.
DATA COLLECTION AND ANALYSIS: We used standard methodological procedures expected by Cochrane.
MAIN RESULTS: We included seven trials (five were cluster-RCTs) with 20,192 children who were 4 to 15 years of age. Trials assessed follow-up periods of three to eight months. Four trials were conducted in the UK, two were based in India and one in the USA. We assessed two trials to be at low risk of bias, two trials to be at high risk of bias and three trials to be at unclear risk of bias.None of the trials had long-term follow-up to ascertain the lasting effects of school dental screening.None of the trials reported the proportion of children with untreated caries or other oral diseases, cost effectiveness or adverse events.Four trials evaluated traditional screening versus no screening. We performed a meta-analysis for the outcome 'dental attendance' and found an inconclusive result with high heterogeneity. The heterogeneity was found to be, in part, due to study design (three cluster-RCTs and one individual-level RCT). Due to the inconsistency, we downgraded the evidence to 'very low certainty' and are unable to draw conclusions about this comparison.Two cluster-RCTs (both four-arm trials) evaluated criteria-based screening versus no screening and showed a pooled effect estimate of RR 1.07 (95% CI 0.99 to 1.16), suggesting a possible benefit for screening (low-certainty evidence). There was no evidence of a difference when criteria-based screening was compared to traditional screening (RR 1.01, 95% CI 0.94 to 1.08) (very low-certainty evidence).In one trial, a specific (personalised) referral letter was compared to a non-specific one. Results favoured the specific referral letter with an effect estimate of RR 1.39 (95% CI 1.09 to 1.77) for attendance at general dentist services and effect estimate of RR 1.90 (95% CI 1.18 to 3.06) for attendance at specialist orthodontist services (low-certainty evidence).One trial compared screening supplemented with motivation to screening alone. Dental attendance was more likely after screening supplemented with motivation, with an effect estimate of RR 3.08 (95% CI 2.57 to 3.71) (low-certainty evidence).Only one trial reported the proportion of children with treated dental caries. This trial evaluated a post screening referral letter based on the common-sense model of self-regulation (a theoretical framework that explains how people understand and respond to threats to their health), with or without a dental information guide, compared to a standard referral letter. The findings were inconclusive. Due to high risk of bias, indirectness and imprecision, we assessed the evidence as very low certainty.
AUTHORS' CONCLUSIONS: The trials included in this review evaluated short-term effects of screening. We found very low-certainty evidence that is insufficient to allow us to draw conclusions about whether there is a role for traditional school dental screening in improving dental attendance. For criteria-based screening, we found low-certainty evidence that it may improve dental attendance when compared to no screening. However, when compared to traditional screening, there is no evidence of a difference in dental attendance (very low-certainty evidence).We found low-certainty evidence to conclude that personalised or specific referral letters may improve dental attendance when compared to non-specific counterparts. We also found low-certainty evidence that screening supplemented with motivation (oral health education and offer of free treatment) may improve dental attendance in comparison to screening alone. For children requiring treatment, we found very-low certainty evidence that was inconclusive regarding whether or not a referral letter based on the 'common-sense model of self-regulation' was better than a standard referral letter.We did not find any trials addressing possible adverse effects of school dental screening or evaluating its effectiveness for improving oral health.
OBJECTIVES: To assess the effects of systemic antimicrobials as an adjunct to SRP for the non-surgical treatment of patients with periodontitis.
SEARCH METHODS: Cochrane Oral Health's Information Specialist searched the following databases to 9 March 2020: Cochrane Oral Health's Trials Register, CENTRAL, MEDLINE, and Embase. The US National Institutes of Health Ongoing Trials Register ClinicalTrials.gov and the World Health Organization International Clinical Trials Registry Platform were searched for ongoing trials.
SELECTION CRITERIA: We included randomized controlled trials (RCTs) which involved individuals with clinically diagnosed untreated periodontitis. Trials compared SRP with systemic antibiotics versus SRP alone/placebo, or with other systemic antibiotics.
DATA COLLECTION AND ANALYSIS: We selected trials, extracted data, and assessed risk of bias in duplicate. We estimated mean differences (MDs) for continuous data, with 95% confidence intervals (CIs). We assessed the certainty of the evidence using GRADE.
MAIN RESULTS: We included 45 trials conducted worldwide involving 2664 adult participants. 14 studies were at low, 8 at high, and the remaining 23 at unclear overall risk of bias. Seven trials did not contribute data to the analysis. We assessed the certainty of the evidence for the 10 comparisons which reported long-term follow-up (≥ 1 year). None of the studies reported data on antimicrobial resistance and patient-reported quality of life changes. Amoxicillin + metronidazole + SRP versus SRP in chronic/aggressive periodontitis: the evidence for percentage of closed pockets (MD -16.20%, 95% CI -25.87 to -6.53; 1 study, 44 participants); clinical attachment level (CAL) (MD -0.47 mm, 95% CI -0.90 to -0.05; 2 studies, 389 participants); probing pocket depth (PD) (MD -0.30 mm, 95% CI -0.42 to -0.18; 2 studies, 389 participants); and percentage of bleeding on probing (BOP) (MD -8.06%, 95% CI -14.26 to -1.85; 2 studies, 389 participants) was of very low certainty. Only the results for closed pockets and BOP showed a minimally important clinical difference (MICD) favouring amoxicillin + metronidazole + SRP. Metronidazole + SRP versus SRP in chronic/aggressive periodontitis: the evidence for percentage of closed pockets (MD -12.20%, 95% CI -29.23 to 4.83; 1 study, 22 participants); CAL (MD -1.12 mm, 95% CI -2.24 to 0; 3 studies, 71 participants); PD (MD -1.11 mm, 95% CI -2.84 to 0.61; 2 studies, 47 participants); and percentage of BOP (MD -6.90%, 95% CI -22.10 to 8.30; 1 study, 22 participants) was of very low certainty. Only the results for CAL and PD showed an MICD favouring the MTZ + SRP group. Azithromycin + SRP versus SRP for chronic/aggressive periodontitis: we found no evidence of a difference in percentage of closed pockets (MD 2.50%, 95% CI -10.19 to 15.19; 1 study, 40 participants); CAL (MD -0.59 mm, 95% CI -1.27 to 0.08; 2 studies, 110 participants); PD (MD -0.77 mm, 95% CI -2.33 to 0.79; 2 studies, 110 participants); and percentage of BOP (MD -1.28%, 95% CI -4.32 to 1.76; 2 studies, 110 participants) (very low-certainty evidence for all outcomes). Amoxicillin + clavulanate + SRP versus SRP for chronic periodontitis: the evidence from 1 study, 21 participants for CAL (MD 0.10 mm, 95% CI -0.51 to 0.71); PD (MD 0.10 mm, 95% CI -0.17 to 0.37); and BOP (MD 0%, 95% CI -0.09 to 0.09) was of very low certainty and did not show a difference between the groups. Doxycycline + SRP versus SRP in aggressive periodontitis: the evidence from 1 study, 22 participants for CAL (MD -0.80 mm, 95% CI -1.49 to -0.11); and PD (MD -1.00 mm, 95% CI -1.78 to -0.22) was of very low certainty, with the doxycycline + SRP group showing an MICD in PD only. Tetracycline + SRP versus SRP for aggressive periodontitis: we found very low-certainty evidence of a difference in long-term improvement in CAL for the tetracycline group (MD -2.30 mm, 95% CI -2.50 to -2.10; 1 study, 26 participants). Clindamycin + SRP versus SRP in aggressive periodontitis: we found very low-certainty evidence from 1 study, 21 participants of a difference in long-term improvement in CAL (MD -1.70 mm, 95% CI -2.40 to -1.00); and PD (MD -1.80 mm, 95% CI -2.47 to -1.13) favouring clindamycin + SRP. Doxycycline + SRP versus metronidazole + SRP for aggressive periodontitis: there was very low-certainty evidence from 1 study, 27 participants of a difference in long-term CAL (MD 1.10 mm, 95% CI 0.36 to 1.84); and PD (MD 1.00 mm, 95% CI 0.30 to 1.70) favouring metronidazole + SRP. Clindamycin + SRP versus metronidazole + SRP for aggressive periodontitis: the evidence from 1 study, 26 participants for CAL (MD 0.20 mm, 95% CI -0.55 to 0.95); and PD (MD 0.20 mm, 95% CI -0.38 to 0.78) was of very low certainty and did not show a difference between the groups. Clindamycin + SRP versus doxycycline + SRP for aggressive periodontitis: the evidence from 1 study, 23 participants for CAL (MD -0.90 mm, 95% CI -1.62 to -0.18); and PD (MD -0.80 mm, 95% CI -1.58 to -0.02) was of very low certainty and did not show a difference between the groups. Most trials testing amoxicillin, metronidazole, and azithromycin reported adverse events such as nausea, vomiting, diarrhoea, mild gastrointestinal disturbances, and metallic taste. No serious adverse events were reported.
AUTHORS' CONCLUSIONS: There is very low-certainty evidence (for long-term follow-up) to inform clinicians and patients if adjunctive systemic antimicrobials are of any help for the non-surgical treatment of periodontitis. There is insufficient evidence to decide whether some antibiotics are better than others when used alongside SRP. None of the trials reported serious adverse events but patients should be made aware of the common adverse events related to these drugs. Well-planned RCTs need to be conducted clearly defining the minimally important clinical difference for the outcomes closed pockets, CAL, PD, and BOP.
OBJECTIVES: To evaluate the effects of home-based tooth whitening products with chemical bleaching action, dispensed by a dentist or over-the-counter.
SEARCH METHODS: Cochrane Oral Health's Information Specialist searched the following databases: Cochrane Oral Health's Trials Register (to 12 June 2018), the Cochrane Central Register of Controlled Trials (CENTRAL; 2018, Issue 6) in the Cochrane Library (searched 12 June 2018), MEDLINE Ovid (1946 to 12 June 2018), and Embase Ovid (1980 to 12 June 2018). The US National Institutes of Health Ongoing Trials Register ClinicalTrials.gov (12 June 2018) and the World Health Organization International Clinical Trials Registry Platform (12 June 2018) were searched for ongoing trials. No restrictions were placed on the language or date of publication when searching the electronic databases.
SELECTION CRITERIA: We included in our review randomised controlled trials (RCTs) which involved adults who were 18 years and above, and compared dentist-dispensed or over-the-counter tooth whitening (bleaching) products with placebo or other comparable products.Quasi-randomised trials, combination of in-office and home-based treatments, and home-based products having physical removal of stains were excluded.
DATA COLLECTION AND ANALYSIS: Two review authors independently selected trials. Two pairs of review authors independently extracted data and assessed risk of bias. We estimated risk ratios (RRs) for dichotomous data, and mean differences (MDs) or standardised mean difference (SMD) for continuous data, with 95% confidence intervals (CIs). We assessed the certainty of the evidence using the GRADE approach.
MAIN RESULTS: We included 71 trials in the review with 26 studies (1398 participants) comparing a bleaching agent to placebo and 51 studies (2382 participants) comparing a bleaching agent to another bleaching agent. Two studies were at low overall risk of bias; two at high overall risk of bias; and the remaining 67 at unclear overall risk of bias.The bleaching agents (carbamide peroxide (CP) gel in tray, hydrogen peroxide (HP) gel in tray, HP strips, CP paint-on gel, HP paint-on gel, sodium hexametaphosphate (SHMP) chewing gum, sodium tripolyphosphate (STPP) chewing gum, and HP mouthwash) at different concentrations with varying application times whitened teeth compared to placebo over a short time period (from 2 weeks to 6 months), however the certainty of the evidence is low to very low.In trials comparing one bleaching agent to another, concentrations, application method and application times, and duration of use varied widely. Most of the comparisons were reported in single trials with small sample sizes and event rates and certainty of the evidence was assessed as low to very low. Therefore the evidence currently available is insufficient to draw reliable conclusions regarding the superiority of home-based bleaching compositions or any particular method of application or concentration or application time or duration of use.Tooth sensitivity and oral irritation were the most common side effects which were more prevalent with higher concentrations of active agents though the effects were mild and transient. Tooth whitening did not have any effect on oral health-related quality of life.
AUTHORS' CONCLUSIONS: We found low to very low-certainty evidence over short time periods to support the effectiveness of home-based chemically-induced bleaching methods compared to placebo for all the outcomes tested.We were unable to draw any conclusions regarding the superiority of home-based bleaching compositions or any particular method of application or concentration or application time or duration of use, as the overall evidence generated was of very low certainty. Well-planned RCTs need to be conducted by standardising methods of application, concentrations, application times, and duration of treatment.
OBJECTIVES: To assess the effectiveness and safety of various interventions for the treatment of oro-antral communications and fistulae due to dental procedures.
SEARCH METHODS: Cochrane Oral Health's Information Specialist searched the following databases: Cochrane Oral Health's Trials Register (to 23 May 2018), the Cochrane Central Register of Controlled Trials (CENTRAL) (the Cochrane Library, 2018, Issue 4), MEDLINE Ovid (1946 to 23 May 2018), and Embase Ovid (1980 to 23 May 2018). The US National Institutes of Health Trials Registry (ClinicalTrials.gov) and the World Health Organization International Clinical Trials Registry Platform were searched for ongoing trials. No restrictions were placed on the language or date of publication when searching the electronic databases. We also searched the reference lists of included and excluded trials for any randomised controlled trials (RCTs).
SELECTION CRITERIA: We included RCTs evaluating any intervention for treating oro-antral communications or oro-antral fistulae due to dental procedures. We excluded quasi-RCTs and cross-over trials. We excluded studies on participants who had oro-antral communications, fistulae or both related to Caldwell-Luc procedure or surgical excision of tumours.
DATA COLLECTION AND ANALYSIS: Two review authors independently selected trials. Two review authors assessed trial risk of bias and extracted data independently. We estimated risk ratios (RR) for dichotomous data, with 95% confidence intervals (CI). We assessed the overall quality of the evidence using the GRADE approach.
MAIN RESULTS: We included only one study in this review, which compared two surgical interventions: pedicled buccal fat pad flap and buccal flap for the treatment of oro-antral communications. The study involved 20 participants. The risk of bias was unclear. The relevant outcome reported in this trial was successful (complete) closure of oro-antral communication.The quality of the evidence for the primary outcome was very low. The study did not find evidence of a difference between interventions for the successful (complete) closure of an oro-antral communication (RR 1.00, 95% Cl 0.83 to 1.20) one month after the surgery. All oro-antral communications in both groups were successfully closed so there were no adverse effects due to treatment failure.We did not find trials evaluating any other intervention for treating oro-antral communications or fistulae due to dental procedures.
AUTHORS' CONCLUSIONS: We found very low quality evidence from a single small study that compared pedicled buccal fat pad and buccal flap. The evidence was insufficient to judge whether there is a difference in the effectiveness of these interventions as all oro-antral communications in the study were successfully closed by one month after surgery. Large, well-conducted RCTs investigating different interventions for the treatment of oro-antral communications and fistulae caused by dental procedures are needed to inform clinical practice.
OBJECTIVES: To assess the effects of pharmacological and non-pharmacological interventions for the management of gagging in people undergoing dental treatment.
SEARCH METHODS: Cochrane Oral Health's Information Specialist searched the Cochrane Oral Health's Trials Register (to 18 March 2019), the Cochrane Central Register of Controlled Trials (CENTRAL; 2019, Issue 2) in the Cochrane Library (searched 18 March 2019), MEDLINE Ovid (1946 to 18 March 2019), Embase Ovid (1980 to 18 March 2019), CINAHL EBSCO (1937 to 18 March 2019), AMED Ovid (1985 to 18 March 2019), and the proceedings of the International Association for Dental Research (IADR) online (2001 to 18 March 2019). The US National Institutes of Health Ongoing Trials Register (ClinicalTrials.gov) and the World Health Organization International Clinical Trials Registry Platform were searched for ongoing trials. We also conducted forwards citation searching on the included studies via Google Scholar. No restrictions were placed on the language or date of publication when searching the electronic databases.
SELECTION CRITERIA: We included randomised controlled trials (RCTs), involving people who were given a pharmacological or non-pharmacological intervention to manage gagging that interfered with dental treatment. We excluded quasi-RCTs. We excluded trials with participants who had central or peripheral nervous system disorders, who had oral lesions or were on systemic medications that might affect the gag sensation, or had undergone surgery which might alter anatomy permanently.
DATA COLLECTION AND ANALYSIS: We independently selected trials, extracted data, and assessed risk of bias. We followed Cochrane's statistical guidelines. We assessed the overall certainty of the evidence using GRADE.
MAIN RESULTS: We included four trials at unclear risk of bias with 328 participants (263 adults and 65 children who were four years or older), in which one trial compared acupuncture and acupressure (with thumb, device and sea band) at P6 (point located three-finger breadths below the wrist on the inner forearm in between the two tendons) to sham acupuncture and acupressure with and without sedation. One trial compared acupuncture at P6 point to sham acupuncture. These trials reported both completion of dental procedure and reduction in gagging (assessor and patient reported) as their outcomes. One cross-over and one split-mouth trial studied the effect of laser at P6 point compared to control. One trial reported reduction in gagging and another reported presence or absence of gagging during dental procedure. Acupuncture at P6 showed uncertain evidence regarding the successful completion of dental procedure (RR 1.78, 95% CI 1.05 to 3.01; two trials, 59 participants; very low-certainty evidence) and uncertain evidence regarding the reduction in gagging (RR 2.57, 95% CI 1.12 to 5.89; one trial, 26 participants; very low-certainty evidence) in comparison to sham acupuncture. Acupuncture at P6 with sedation did not show any difference when compared to sham acupuncture with sedation (RR 1.08, 95% CI 0.91 to 1.28; one trial, 34 participants; very low-certainty evidence). Acupressure using thumb pressure with or without sedation showed no clear difference in completing dental procedure (RR 0.96, 95% CI 0.84 to 1.10; one trial, 39 participants; very low-certainty evidence; and RR 0.85, 95% CI 0.50 to 1.46; one trial, 30 participants; very low-certainty evidence; respectively), or reduction in gagging (RR 1.06, 95% CI 0.92 to 1.23; one trial, 39 participants; very low-certainty evidence; and RR 0.92, 95% CI 0.60 to 1.41; one trial, 30 participants; very low-certainty evidence; respectively) when compared to sham acupressure with or without sedation. Acupressure at P6 with device showed uncertain evidence regarding the successful completion of dental procedure (RR 2.63, 95% CI 1.33 to 5.18; one trial, 34 participants; very low-certainty evidence) and uncertain evidence regarding the reduction in gagging (RR 3.94, 95% CI 1.63 to 9.53; one trial, 34 participants; very low-certainty evidence) when compared to sham acupressure. However, device combined with sedation showed no difference for either outcome (RR 1.16, 95% CI 0.90 to 1.48; one trial, 27 participants; very low-certainty evidence; and RR 1.26, 95% CI 0.93 to 1.69; one trial, 27 participants; very low-certainty evidence; respectively). Acupressure using a sea band with or without sedation showed no clear difference in completing dental procedure (RR 0.88, 95% CI 0.67 to 1.17; one trial, 21 participants; very low-certainty evidence; and RR 1.80, 95% CI 0.63 to 5.16; one trial, 19 participants; very low-certainty evidence; respectively), or reduction in gagging (RR 0.88, 95% CI 0.67 to 1.17; one trial, 21 participants; very low-certainty evidence; and RR 2.70, 95% CI 0.72 to 10.14; one trial, 19 participants; very low-certainty evidence; respectively) when compared to sham acupressure with or without sedation. Laser at P6 showed a difference in absence of gagging (odds ratio (OR) 86.33, 95% CI 29.41 to 253.45; one trial, 40 participants; very low-certainty evidence) and reduction in gagging (MD 1.80, 95% CI 1.53 to 2.07; one trial, 25 participants; very low-certainty evidence) during dental procedure when compared to dummy laser application. No noteworthy adverse effects were reported. For acupuncture at P6, the trial authors were unsure whether the reported adverse effects were due to participant anxiety or due to the intervention. None of the trials on acupressure or laser reported on this outcome. We did not find trials evaluating any other interventions used to manage gagging in people undergoing dental treatment.
AUTHORS' CONCLUSIONS: We found very low-certainty evidence from four trials that was insufficient to conclude if there is any benefit of acupuncture, acupressure or laser at P6 point in reducing gagging and allowing successful completion of dental procedures. We did not find any evidence on any other interventions for managing the gag reflex during dental treatment. More well-designed and well-reported trials evaluating different interventions are needed.
OBJECTIVES: To assess the effects of interventions for treating different types of post-extraction bleeding.
SEARCH METHODS: Cochrane Oral Health's Information Specialist searched the following databases: Cochrane Oral Health's Trials Register (to 24 January 2018), the Cochrane Central Register of Controlled Trials (CENTRAL) (the Cochrane Library, 2017, Issue 12), MEDLINE Ovid (1946 to 24 January 2018), Embase Ovid (1 May 2015 to 24 January 2018) and CINAHL EBSCO (1937 to 24 January 2018). The US National Institutes of Health Trials Registry (ClinicalTrials.gov) and the World Health Organization International Clinical Trials Registry Platform were searched for ongoing trials. We searched the reference lists of relevant systematic reviews.
SELECTION CRITERIA: We considered randomised controlled trials (RCTs) that evaluated any intervention for treating PEB, with male or female participants of any age, regardless of type of teeth (anterior or posterior, mandibular or maxillary). Trials could compare one type of intervention with another, with placebo, or with no treatment.
DATA COLLECTION AND ANALYSIS: Three pairs of review authors independently screened search records. We obtained full papers for potentially relevant trials. If data had been extracted, we would have followed the methods described in the Cochrane Handbook for Systematic Reviews of Interventions for the statistical analysis.
MAIN RESULTS: We did not find any randomised controlled trial suitable for inclusion in this review.
AUTHORS' CONCLUSIONS: We were unable to identify any reports of randomised controlled trials that evaluated the effects of different interventions for the treatment of post-extraction bleeding. In view of the lack of reliable evidence on this topic, clinicians must use their clinical experience to determine the most appropriate means of treating this condition, depending on patient-related factors. There is a need for well designed and appropriately conducted clinical trials on this topic, which conform to the CONSORT statement (www.consort-statement.org/).
OBJECTIVES: The objectives of this review were to assess the effects of various interventions used to control halitosis due to oral diseases only. We excluded studies including patients with halitosis secondary to systemic disease and halitosis-masking interventions.
SEARCH METHODS: Cochrane Oral Health's Information Specialist searched the following databases: Cochrane Oral Health's Trials Register (to 8 April 2019), the Cochrane Central Register of Controlled Trials (CENTRAL; 2019, Issue 3) in the Cochrane Library (searched 8 April 2019), MEDLINE Ovid (1946 to 8 April 2019), and Embase Ovid (1980 to 8 April 2019). We also searched LILACS BIREME (1982 to 19 April 2019), the National Database of Indian Medical Journals (1985 to 19 April 2019), OpenGrey (1992 to 19 April 2019), and CINAHL EBSCO (1937 to 19 April 2019). The US National Institutes of Health Ongoing Trials Register ClinicalTrials.gov (8 April 2019), the World Health Organization International Clinical Trials Registry Platform (8 April 2019), the ISRCTN Registry (19 April 2019), the Clinical Trials Registry - India (19 April 2019), were searched for ongoing trials. We also searched the cross-references of included studies and systematic reviews published on the topic. No restrictions were placed on the language or date of publication when searching the electronic databases.
SELECTION CRITERIA: We included randomised controlled trials (RCTs) which involved adults over the age of 16, and any intervention for managing halitosis compared to another or placebo, or no intervention. The active interventions or controls were administered over a minimum of one week and with no upper time limit. We excluded quasi-randomised trials, trials comparing the results for less than one week follow-up, and studies including advanced periodontitis.
DATA COLLECTION AND ANALYSIS: Two pairs of review authors independently selected trials, extracted data, and assessed risk of bias. We estimated mean differences (MDs) for continuous data, with 95% confidence intervals (CIs). We assessed the certainty of the evidence using the GRADE approach.
MAIN RESULTS: We included 44 trials in the review with 1809 participants comparing an intervention with a placebo or a control. The age of participants ranged from 17 to 77 years. Most of the trials reported on short-term follow-up (ranging from one week to four weeks). Only one trial reported long-term follow-up (three months). Three studies were at low overall risk of bias, 16 at high overall risk of bias, and the remaining 25 at unclear overall risk of bias. We compared different types of interventions which were categorised as mechanical debridement, chewing gums, systemic deodorising agents, topical agents, toothpastes, mouthrinse/mouthwash, tablets, and combination methods. Mechanical debridement: for mechanical tongue cleaning versus no tongue cleaning, the evidence was very uncertain for the outcome dentist-reported organoleptic test (OLT) scores (MD -0.20, 95% CI -0.34 to -0.07; 2 trials, 46 participants; very low-certainty evidence). No data were reported for patient-reported OLT score or adverse events. Chewing gums: for 0.6% eucalyptus chewing gum versus placebo chewing gum, the evidence was very uncertain for the outcome dentist-reported OLT scores (MD -0.10, 95% CI -0.31 to 0.11; 1 trial, 65 participants; very low-certainty evidence). No data were reported for patient-reported OLT score or adverse events. Systemic deodorising agents: for 1000 mg champignon versus placebo, the evidence was very uncertain for the outcome patient-reported visual analogue scale (VAS) scores (MD -1.07, 95% CI -14.51 to 12.37; 1 trial, 40 participants; very low-certainty evidence). No data were reported for dentist-reported OLT score or adverse events. Topical agents: for hinokitiol gel versus placebo gel, the evidence was very uncertain for the outcome dentist-reported OLT scores (MD -0.27, 95% CI -1.26 to 0.72; 1 trial, 18 participants; very low-certainty evidence). No data were reported for patient-reported OLT score or adverse events. Toothpastes: for 0.3% triclosan toothpaste versus control toothpaste, the evidence was very uncertain for the outcome dentist-reported OLT scores (MD -3.48, 95% CI -3.77 to -3.19; 1 trial, 81 participants; very low-certainty evidence). No data were reported for patient-reported OLT score or adverse events. Mouthrinse/mouthwash: for mouthwash containing chlorhexidine and zinc acetate versus placebo mouthwash, the evidence was very uncertain for the outcome dentist-reported OLT scores (MD -0.20, 95% CI -0.58 to 0.18; 1 trial, 44 participants; very low-certainty evidence). No data were reported for patient-reported OLT score or adverse events. Tablets: no data were reported on key outcomes for this comparison. Combination methods: for brushing plus cetylpyridium mouthwash versus brushing, the evidence was uncertain for the outcome dentist-reported OLT scores (MD -0.48, 95% CI -0.72 to -0.24; 1 trial, 70 participants; low-certainty evidence). No data were reported for patient-reported OLT score or adverse events.
AUTHORS' CONCLUSIONS: We found low- to very low-certainty evidence to support the effectiveness of interventions for managing halitosis compared to placebo or control for the OLT and patient-reported outcomes tested. We were unable to draw any conclusions regarding the superiority of any intervention or concentration. Well-planned RCTs need to be conducted by standardising the interventions and concentrations.
OBJECTIVES: To assess the effects of preprocedural mouth rinses used in dental clinics to minimise incidence of infection in dental healthcare providers and reduce or neutralise contamination in aerosols.
SEARCH METHODS: We used standard, extensive Cochrane search methods. The latest search date was 4 February 2022.
SELECTION CRITERIA: We included randomised controlled trials and excluded laboratory-based studies. Study participants were dental patients undergoing AGPs. Studies compared any preprocedural mouth rinse used to reduce contaminated aerosols versus placebo, no mouth rinse or another mouth rinse. Our primary outcome was incidence of infection of dental healthcare providers and secondary outcomes were reduction in the level of contamination of the dental operatory environment, cost, change in mouth microbiota, adverse events, and acceptability and feasibility of the intervention.
DATA COLLECTION AND ANALYSIS: Two review authors screened search results, extracted data from included studies, assessed the risk of bias in the studies and judged the certainty of the available evidence. We used mean differences (MDs) and 95% confidence intervals (CIs) as the effect estimate for continuous outcomes, and random-effects meta-analysis to combine data MAIN RESULTS: We included 17 studies with 830 participants aged 18 to 70 years. We judged three trials at high risk of bias, two at low risk and 12 at unclear risk of bias. None of the studies measured our primary outcome of the incidence of infection in dental healthcare providers. The primary outcome in the studies was reduction in the level of bacterial contamination measured in colony-forming units (CFUs) at distances of less than 2 m (intended to capture larger droplets) and 2 m or more (to capture droplet nuclei from aerosols arising from the participant's oral cavity). It is unclear what size of CFU reduction represents a clinically significant amount. There is low- to very low-certainty evidence that chlorhexidine (CHX) may reduce bacterial contamination, as measured by CFUs, compared with no rinsing or rinsing with water. There were similar results when comparing cetylpyridinium chloride (CPC) with no rinsing and when comparing CPC, essential oils/herbal mouthwashes or boric acid with water. There is very low-certainty evidence that tempered mouth rinses may provide a greater reduction in CFUs than cold mouth rinses. There is low-certainty evidence that CHX may reduce CFUs more than essential oils/herbal mouthwashes. The evidence for other head-to-head comparisons was limited and inconsistent. The studies did not provide any information on costs, change in micro-organisms in the patient's mouth or adverse events such as temporary discolouration, altered taste, allergic reaction or hypersensitivity. The studies did not assess acceptability of the intervention to patients or feasibility of implementation for dentists. AUTHORS' CONCLUSIONS: None of the included studies measured the incidence of infection among dental healthcare providers. The studies measured only reduction in level of bacterial contamination in aerosols. None of the studies evaluated viral or fungal contamination. We have only low to very low certainty for all findings. We are unable to draw conclusions regarding whether there is a role for preprocedural mouth rinses in reducing infection risk or the possible superiority of one preprocedural rinse over another. Studies are needed that measure the effect of rinses on infectious disease risk among dental healthcare providers and on contaminated aerosols at larger distances with standardised outcome measurement.
OBJECTIVES: To assess the effectiveness of methods used during dental treatment procedures to minimize aerosol production and reduce or neutralize contamination in aerosols.
SEARCH METHODS: Cochrane Oral Health's Information Specialist searched the following databases on 17 September 2020: Cochrane Oral Health's Trials Register, the Cochrane Central Register of Controlled Trials (CENTRAL) (in the Cochrane Library, 2020, Issue 8), MEDLINE Ovid (from 1946); Embase Ovid (from 1980); the WHO COVID-19 Global literature on coronavirus disease; the US National Institutes of Health Trials Registry (ClinicalTrials.gov); and the Cochrane COVID-19 Study Register. We placed no restrictions on the language or date of publication.
SELECTION CRITERIA: We included randomized controlled trials (RCTs) and controlled clinical trials (CCTs) on aerosol-generating procedures (AGPs) performed by dental healthcare providers that evaluated methods to reduce contaminated aerosols in dental clinics (excluding preprocedural mouthrinses). The primary outcomes were incidence of infection in dental staff or patients, and reduction in volume and level of contaminated aerosols in the operative environment. The secondary outcomes were cost, accessibility and feasibility.
DATA COLLECTION AND ANALYSIS: Two review authors screened search results, extracted data from the included studies, assessed the risk of bias in the studies, and judged the certainty of the available evidence. We used mean differences (MDs) and 95% confidence intervals (CIs) as the effect estimate for continuous outcomes, and random-effects meta-analysis to combine data. We assessed heterogeneity.
MAIN RESULTS: We included 16 studies with 425 participants aged 5 to 69 years. Eight studies had high risk of bias; eight had unclear risk of bias. No studies measured infection. All studies measured bacterial contamination using the surrogate outcome of colony-forming units (CFU). Two studies measured contamination per volume of air sampled at different distances from the patient's mouth, and 14 studies sampled particles on agar plates at specific distances from the patient's mouth. The results presented below should be interpreted with caution as the evidence is very low certainty due to heterogeneity, risk of bias, small sample sizes and wide confidence intervals. Moreover, we do not know the 'minimal clinically important difference' in CFU. High-volume evacuator Use of a high-volume evacuator (HVE) may reduce bacterial contamination in aerosols less than one foot (~ 30 cm) from a patient's mouth (MD -47.41, 95% CI -92.76 to -2.06; 3 RCTs, 122 participants (two studies had split-mouth design); very high heterogeneity I² = 95%), but not at longer distances (MD -1.00, -2.56 to 0.56; 1 RCT, 80 participants). One split-mouth RCT (six participants) found that HVE may not be more effective than conventional dental suction (saliva ejector or low-volume evacuator) at 40 cm (MD CFU -2.30, 95% CI -5.32 to 0.72) or 150 cm (MD -2.20, 95% CI -14.01 to 9.61). Dental isolation combination system One RCT (50 participants) found that there may be no difference in CFU between a combination system (Isolite) and a saliva ejector (low-volume evacuator) during AGPs (MD -0.31, 95% CI -0.82 to 0.20) or after AGPs (MD -0.35, -0.99 to 0.29). However, an 'n of 1' design study showed that the combination system may reduce CFU compared with rubber dam plus HVE (MD -125.20, 95% CI -174.02 to -76.38) or HVE (MD -109.30, 95% CI -153.01 to -65.59). Rubber dam One split-mouth RCT (10 participants) receiving dental treatment, found that there may be a reduction in CFU with rubber dam at one-metre (MD -16.20, 95% CI -19.36 to -13.04) and two-metre distance (MD -11.70, 95% CI -15.82 to -7.58). One RCT of 47 dental students found use of rubber dam may make no difference in CFU at the forehead (MD 0.98, 95% CI -0.73 to 2.70) and occipital region of the operator (MD 0.77, 95% CI -0.46 to 2.00). One split-mouth RCT (21 participants) found that rubber dam plus HVE may reduce CFU more than cotton roll plus HVE on the patient's chest (MD -251.00, 95% CI -267.95 to -234.05) and dental unit light (MD -12.70, 95% CI -12.85 to -12.55). Air cleaning systems One split-mouth CCT (two participants) used a local stand-alone air cleaning system (ACS), which may reduce aerosol contamination during cavity preparation (MD -66.70 CFU, 95% CI -120.15 to -13.25 per cubic metre) or ultrasonic scaling (MD -32.40, 95% CI - 51.55 to -13.25). Another CCT (50 participants) found that laminar flow in the dental clinic combined with a HEPA filter may reduce contamination approximately 76 cm from the floor (MD -483.56 CFU, 95% CI -550.02 to -417.10 per cubic feet per minute per patient) and 20 cm to 30 cm from the patient's mouth (MD -319.14 CFU, 95% CI - 385.60 to -252.68). Disinfectants ‒ antimicrobial coolants Two RCTs evaluated use of antimicrobial coolants during ultrasonic scaling. Compared with distilled water, coolant containing chlorhexidine (CHX), cinnamon extract coolant or povidone iodine may reduce CFU: CHX (MD -124.00, 95% CI -135.78 to -112.22; 20 participants), povidone iodine (MD -656.45, 95% CI -672.74 to -640.16; 40 participants), cinnamon (MD -644.55, 95% CI -668.70 to -620.40; 40 participants). CHX coolant may reduce CFU more than povidone iodine (MD -59.30, 95% CI -64.16 to -54.44; 20 participants), but not more than cinnamon extract (MD -11.90, 95% CI -35.88 to 12.08; 40 participants).
AUTHORS' CONCLUSIONS: We found no studies that evaluated disease transmission via aerosols in a dental setting; and no evidence about viral contamination in aerosols. All of the included studies measured bacterial contamination using colony-forming units. There appeared to be some benefit from the interventions evaluated but the available evidence is very low certainty so we are unable to draw reliable conclusions. We did not find any studies on methods such as ventilation, ionization, ozonisation, UV light and fogging. Studies are needed that measure contamination in aerosols, size distribution of aerosols and infection transmission risk for respiratory diseases such as COVID-19 in dental patients and staff.
OBJECTIVES: To assess the effects of interventions for the management of patients with taste disturbances.
SEARCH METHODS: Cochrane Oral Health's Information Specialist searched the following databases: Cochrane Oral Health's Trials Register (to 4 July 2017); the Cochrane Central Register of Controlled Trials (CENTRAL; 2017 Issue 6) in the Cochrane Library (searched 4 July 2017); MEDLINE Ovid (1946 to 4 July 2017); Embase Ovid (1980 to 4 July 2017); CINAHL EBSCO (1937 to 4 July 2017); and AMED Ovid (1985 to 4 July 2017). The US National Institutes of Health Ongoing Trials Register ClinicalTrials.gov (www.clinicaltrials.gov) and the World Health Organization International Clinical Trials Registry Platform were searched for trials. Abstracts from scientific meetings and conferences were searched on 25 September 2017. No restrictions were placed on the language or date of publication when searching the electronic databases.
SELECTION CRITERIA: We included all randomised controlled trials (RCTs) comparing any pharmacological agent with a control intervention or any non-pharmacological agent with a control intervention. We also included cross-over trials in the review.
DATA COLLECTION AND ANALYSIS: Two pairs of review authors independently, and in duplicate, assessed the quality of trials and extracted data. Wherever possible, we contacted trial authors for additional information. We collected adverse events information from the trials.
MAIN RESULTS: We included 10 trials (581 participants), nine of which we were able to include in the quantitative analyses (566 participants). We assessed three trials (30%) as having a low risk of bias, four trials (40%) at high risk of bias and three trials (30%) as having an unclear risk of bias. We only included studies on taste disorders in this review that were either idiopathic, or resulting from zinc deficiency or chronic renal failure.Of these, nine trials with 544 people compared zinc supplements to placebo for patients with taste disorders. The participants in two trials were children and adolescents with respective mean ages of 10 and 11.2 years and the other seven trials had adult participants. Out of these nine, two trials assessed the patient-reported outcome for improvement in taste acuity using zinc supplements (risk ratio (RR) 1.40, 95% confidence interval (CI) 0.94 to 2.09; 119 participants, very low-quality evidence). We meta-analysed for taste acuity improvement using objective outcome (continuous data) in idiopathic and zinc-deficient taste disorder patients (standardised mean difference (SMD) 0.44, 95% CI 0.23 to 0.65; 366 participants, three trials, very low-quality evidence). We also analysed one cross-over trial separately using the first half of the results for taste detection (mean difference (MD) 2.50, 95% CI 0.93 to 4.07; 14 participants, very low-quality evidence), and taste recognition (MD 3.00, 95% CI 0.66 to 5.34; 14 participants, very low-quality evidence). We meta-analysed taste acuity improvement using objective outcome (dichotomous data) in idiopathic and zinc-deficient taste disorder patients (RR 1.42, 95% 1.09 to 1.84; 292 participants, two trials, very low-quality evidence). Out of the nine trials using zinc supplementation, four reported adverse events like eczema, nausea, abdominal pain, diarrhoea, constipation, decrease in blood iron, increase in blood alkaline phosphatase, and minor increase in blood triglycerides.One trial tested taste discrimination using acupuncture (MD 2.80, 95% CI -1.18 to 6.78; 37 participants, very low-quality evidence). No adverse events were reported in the acupuncture trial.None of the included trials could be included in the meta-analysis for health-related quality of life in taste disorder patients.
AUTHORS' CONCLUSIONS: We found very low-quality evidence that was insufficient to conclude on the role of zinc supplements to improve taste acuity reported by patients and very low-quality evidence that zinc supplements improve taste acuity in patients with zinc deficiency/idiopathic taste disorders. We did not find any evidence to conclude the role of zinc supplements for improving taste discrimination, or any evidence addressing health-related quality of life due to taste disorders.We found very low-quality evidence that is not sufficient to conclude on the role of acupuncture for improving taste discrimination in cases of idiopathic dysgeusia (distortion of taste) and hypogeusia (reduced ability to taste). We were unable to draw any conclusions regarding the superiority of zinc supplements or acupuncture as none of the trials compared these interventions.