Affiliations 

  • 1 Faculty of Dentistry, Melaka-Manipal Medical College, Manipal Academy of Higher Education (MAHE), Manipal, Department of Oral Medicine and Oral Radiology, Jalan Batu Hampar, Bukit Baru, Melaka, Malaysia, 75150
  • 2 Faculty of Dentistry, Melaka-Manipal Medical College, Manipal Academy of Higher Education (MAHE), Department of Prosthodontics, Jalan Batu Hampar, Bukit Baru, Melaka, Malaysia, 75150
  • 3 Faculty of Dentistry, Melaka-Manipal Medical College, Manipal Academy of Higher Education (MAHE), Department of Paediatric Dentistry, Jalan Batu Hampar, Bukit Baru, Melaka, Malaysia, 75150
  • 4 Faculty of Dentistry, Melaka-Manipal Medical College, Manipal Academy of Higher Education (MAHE), Department of Periodontology and Implantology, Jalan Batu Hampar, Bukit Baru, Melaka, Malaysia, 75150
  • 5 Faculty of Dentistry, Melaka-Manipal Medical College, Manipal Academy of Higher Education (MAHE), Department of Community Dentistry, Jalan Batu Hampar, Bukit Baru, Melaka, Melaka, Malaysia, 75150
  • 6 Melaka-Manipal Medical College, Manipal Academy of Higher Education (MAHE), Department of Paediatric Dentistry, Faculty of Dentistry, Melaka, Malaysia, 75150
Cochrane Database Syst Rev, 2019 Dec 11;12(12):CD012213.
PMID: 31825092 DOI: 10.1002/14651858.CD012213.pub2

Abstract

BACKGROUND: Halitosis or bad breath is a symptom in which a noticeably unpleasant breath odour is present due to an underlying oral or systemic disease. 50% to 60% of the world population has experienced this problem which can lead to social stigma and loss of self-confidence. Multiple interventions have been tried to control halitosis ranging from mouthwashes and toothpastes to lasers. This new Cochrane Review incorporates Cochrane Reviews previously published on tongue scraping and mouthrinses for halitosis.

OBJECTIVES: The objectives of this review were to assess the effects of various interventions used to control halitosis due to oral diseases only. We excluded studies including patients with halitosis secondary to systemic disease and halitosis-masking interventions.

SEARCH METHODS: Cochrane Oral Health's Information Specialist searched the following databases: Cochrane Oral Health's Trials Register (to 8 April 2019), the Cochrane Central Register of Controlled Trials (CENTRAL; 2019, Issue 3) in the Cochrane Library (searched 8 April 2019), MEDLINE Ovid (1946 to 8 April 2019), and Embase Ovid (1980 to 8 April 2019). We also searched LILACS BIREME (1982 to 19 April 2019), the National Database of Indian Medical Journals (1985 to 19 April 2019), OpenGrey (1992 to 19 April 2019), and CINAHL EBSCO (1937 to 19 April 2019). The US National Institutes of Health Ongoing Trials Register ClinicalTrials.gov (8 April 2019), the World Health Organization International Clinical Trials Registry Platform (8 April 2019), the ISRCTN Registry (19 April 2019), the Clinical Trials Registry - India (19 April 2019), were searched for ongoing trials. We also searched the cross-references of included studies and systematic reviews published on the topic. No restrictions were placed on the language or date of publication when searching the electronic databases.

SELECTION CRITERIA: We included randomised controlled trials (RCTs) which involved adults over the age of 16, and any intervention for managing halitosis compared to another or placebo, or no intervention. The active interventions or controls were administered over a minimum of one week and with no upper time limit. We excluded quasi-randomised trials, trials comparing the results for less than one week follow-up, and studies including advanced periodontitis.

DATA COLLECTION AND ANALYSIS: Two pairs of review authors independently selected trials, extracted data, and assessed risk of bias. We estimated mean differences (MDs) for continuous data, with 95% confidence intervals (CIs). We assessed the certainty of the evidence using the GRADE approach.

MAIN RESULTS: We included 44 trials in the review with 1809 participants comparing an intervention with a placebo or a control. The age of participants ranged from 17 to 77 years. Most of the trials reported on short-term follow-up (ranging from one week to four weeks). Only one trial reported long-term follow-up (three months). Three studies were at low overall risk of bias, 16 at high overall risk of bias, and the remaining 25 at unclear overall risk of bias. We compared different types of interventions which were categorised as mechanical debridement, chewing gums, systemic deodorising agents, topical agents, toothpastes, mouthrinse/mouthwash, tablets, and combination methods. Mechanical debridement: for mechanical tongue cleaning versus no tongue cleaning, the evidence was very uncertain for the outcome dentist-reported organoleptic test (OLT) scores (MD -0.20, 95% CI -0.34 to -0.07; 2 trials, 46 participants; very low-certainty evidence). No data were reported for patient-reported OLT score or adverse events. Chewing gums: for 0.6% eucalyptus chewing gum versus placebo chewing gum, the evidence was very uncertain for the outcome dentist-reported OLT scores (MD -0.10, 95% CI -0.31 to 0.11; 1 trial, 65 participants; very low-certainty evidence). No data were reported for patient-reported OLT score or adverse events. Systemic deodorising agents: for 1000 mg champignon versus placebo, the evidence was very uncertain for the outcome patient-reported visual analogue scale (VAS) scores (MD -1.07, 95% CI -14.51 to 12.37; 1 trial, 40 participants; very low-certainty evidence). No data were reported for dentist-reported OLT score or adverse events. Topical agents: for hinokitiol gel versus placebo gel, the evidence was very uncertain for the outcome dentist-reported OLT scores (MD -0.27, 95% CI -1.26 to 0.72; 1 trial, 18 participants; very low-certainty evidence). No data were reported for patient-reported OLT score or adverse events. Toothpastes: for 0.3% triclosan toothpaste versus control toothpaste, the evidence was very uncertain for the outcome dentist-reported OLT scores (MD -3.48, 95% CI -3.77 to -3.19; 1 trial, 81 participants; very low-certainty evidence). No data were reported for patient-reported OLT score or adverse events. Mouthrinse/mouthwash: for mouthwash containing chlorhexidine and zinc acetate versus placebo mouthwash, the evidence was very uncertain for the outcome dentist-reported OLT scores (MD -0.20, 95% CI -0.58 to 0.18; 1 trial, 44 participants; very low-certainty evidence). No data were reported for patient-reported OLT score or adverse events. Tablets: no data were reported on key outcomes for this comparison. Combination methods: for brushing plus cetylpyridium mouthwash versus brushing, the evidence was uncertain for the outcome dentist-reported OLT scores (MD -0.48, 95% CI -0.72 to -0.24; 1 trial, 70 participants; low-certainty evidence). No data were reported for patient-reported OLT score or adverse events.

AUTHORS' CONCLUSIONS: We found low- to very low-certainty evidence to support the effectiveness of interventions for managing halitosis compared to placebo or control for the OLT and patient-reported outcomes tested. We were unable to draw any conclusions regarding the superiority of any intervention or concentration. Well-planned RCTs need to be conducted by standardising the interventions and concentrations.

* Title and MeSH Headings from MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.