Displaying all 3 publications

Abstract:
Sort:
  1. Kuznetsov AN, Kuznetsova SP
    Izv. Akad. Nauk. Ser. Biol., 2013 Mar-Apr;?(2):206-16.
    PMID: 23789426
    This study was carried out during the period 1989-2011. The following areas were included: Vietnam, Laos, Cambodia, Indonesia, and Malaysia. Climax tropical forest and anthropogenically transformed ecosystems, including those damaged by the chemical warfare program of the United States in Vietnam, were investigated. Some regularities in the structure dynamics and functioning of forests ecosystems under a tropical monsoon climate have been revealed. The principles of classification of tropical forests have been elaborated. The major results of investigation of the tropical monsoon forests in Vietnam are given.
  2. Delgado MM, Tikhonov G, Meyke E, Babushkin M, Bespalova T, Bondarchuk S, et al.
    Front. Zool., 2018;15:41.
    PMID: 30410564 DOI: 10.1186/s12983-018-0286-5
    Background: For brown bears (Ursus arctos), hibernation is a critical part of the annual life cycle because energy savings during hibernation can be crucial for overwintering, and females give birth to cubs at that time. For hibernation to be a useful strategy, timing is critical. However, environmental conditions vary greatly, which might have a negative effect on the functionality of the evolved biological time-keeping. Here, we used a long-term dataset (69 years) on brown bear denning phenology recorded in 12 Russian protected areas and quantified the phenological responses to variation in temperature and snow depth. Previous studies analyzing the relationship between climate and denning behavior did not consider that the brown bear response to variation in climatic factors might vary through a period preceding den entry and exit. We hypothesized that there is a seasonal sensitivity pattern of bear denning phenology in response to variation in climatic conditions, such that the effect of climatic variability will be pronounced only when it occurs close to den exit and entry dates.

    Results: We found that brown bears are most sensitive to climatic variations around the observed first den exit and last entry dates, such that an increase/decrease in temperature in the periods closer to the first den exit and last entry dates have a greater influence on the denning dates than in other periods.

    Conclusions: Our study shows that climatic factors are modulating brown bear hibernation phenology and provide a further structuring of this modulation. The sensitivity of brown bears to changes in climatic factors during hibernation might affect their ability to cope with global climate change. Therefore, understanding these processes will be essential for informed management of biodiversity in a changing world.

  3. Golomidova A, Kupriyanov Y, Gabdrakhmanov R, Gurkova M, Kulikov E, Belalov I, et al.
    Int J Mol Sci, 2024 Nov 27;25(23).
    PMID: 39684465 DOI: 10.3390/ijms252312755
    Escherichia coli and its bacteriophages are among the most studied model microorganisms. Bacteriophages for various E. coli strains can typically be easily isolated from environmental sources, and many of these viruses can be harnessed to combat E. coli infections in humans and animals. However, some relatively rare E. coli strains pose significant challenges in finding suitable phages. The uropathogenic strain E. coli UPEC124, isolated from a patient suffering from neurogenic bladder dysfunction, was found to be resistant to all coliphages in our collections, and initial attempts to isolate new phages failed. Using an improved procedure for phage enrichment, we isolated the N4-related phage Mimir124, belonging to the Gamaleyavirus genus, which was able to lyse this "difficult" E. coli strain. Although Mimir124 is a narrow-spectrum phage, it was effective in the individualized treatment of the patient, leading to pathogen eradication. The primary receptor of Mimir124 was the O antigen of the O101 type; consequently, Mimir124-resistant clones were rough (having lost the O antigen). These clones, however, gained sensitivity to some phages that recognize outer membrane proteins as receptors. Despite the presence of nine potential antiviral systems in the genome of the UPEC124 strain, the difficulty in finding effective phages was largely due to the efficient, non-specific cell surface protection provided by the O antigen. These results highlight the importance of an individualized approach to phage therapy, where narrow host-range phages-typically avoided in pre-fabricated phage cocktails-may be instrumental. Furthermore, this study illustrates how integrating genomic, structural, and functional insights can guide the development of innovative therapeutic strategies, paving the way for broader applications of phage therapy in combating multidrug-resistant bacterial pathogens.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links