Displaying all 4 publications

Abstract:
Sort:
  1. Liew CY, Labadin J, Kok WC, Eze MO
    Appl Netw Sci, 2023;8(1):6.
    PMID: 36684825 DOI: 10.1007/s41109-023-00533-y
    The graph-theoretic based studies employing bipartite network approach mostly focus on surveying the statistical properties of the structure and behavior of the network systems under the domain of complex network analysis. They aim to provide the big-picture-view insights of a networked system by looking into the dynamic interaction and relationship among the vertices. Nonetheless, incorporating the features of individual vertex and capturing the dynamic interaction of the heterogeneous local rules governing each of them in the studies is lacking. The methodology in achieving this could hardly be found. Consequently, this study intends to propose a methodology framework that considers the influence of heterogeneous features of each node to the overall network behavior in modeling real-world bipartite network system. The proposed framework consists of three main stages with principal processes detailed in each stage, and three libraries of techniques to guide the modeling activities. It is iterative and process-oriented in nature and allows future network expansion. Two case studies from the domain of communicable disease in epidemiology and habitat suitability in ecology employing this framework are also presented. The results obtained suggest that the methodology could serve as a generic framework in advancing the current state of the art of bipartite network approach.
  2. Phang P, Labadin J, Suhaila J, Aslam S, Hazmi H
    BMC Public Health, 2023 Jul 20;23(1):1396.
    PMID: 37474904 DOI: 10.1186/s12889-023-16300-8
    BACKGROUND: In Sarawak, 252 300 coronavirus disease 2019 (COVID-19) cases have been recorded with 1 619 fatalities in 2021, compared to only 1 117 cases in 2020. Since Sarawak is geographically separated from Peninsular Malaysia and half of its population resides in rural districts where medical resources are limited, the analysis of spatiotemporal heterogeneity of disease incidence rates and their relationship with socio-demographic factors are crucial in understanding the spread of the disease in Sarawak.

    METHODS: The spatial dependence of district-wise incidence rates is investigated using spatial autocorrelation analysis with two orders of contiguity weights for various pandemic waves. Nine determinants are chosen from 14 covariates of socio-demographic factors via elastic net regression and recursive partitioning. The relationships between incidence rates and socio-demographic factors are examined using ordinary least squares, spatial lag and spatial error models, and geographically weighted regression.

    RESULTS: In the first 8 months of 2021, COVID-19 severely affected Sarawak's central region, which was followed by the southern region in the next 2 months. In the third wave, based on second-order spatial weights, the incidence rate in a district is most strongly influenced by its neighboring districts' rate, although the variance of incidence rates is best explained by local regression coefficient estimates of socio-demographic factors in the first wave. It is discovered that the percentage of households with garbage collection facilities, population density and the proportion of male in the population are positively associated with the increase in COVID-19 incidence rates.

    CONCLUSION: This research provides useful insights for the State Government and public health authorities to critically incorporate socio-demographic characteristics of local communities into evidence-based decision-making for altering disease monitoring and response plans. Policymakers can make well-informed judgments and implement targeted interventions by having an in-depth understanding of the spatial patterns and relationships between COVID-19 incidence rates and socio-demographic characteristics. This will effectively help in mitigating the spread of the disease.

  3. Gill BS, Jayaraj VJ, Singh S, Mohd Ghazali S, Cheong YL, Md Iderus NH, et al.
    Int J Environ Res Public Health, 2020 Jul 30;17(15).
    PMID: 32751669 DOI: 10.3390/ijerph17155509
    Malaysia is currently facing an outbreak of COVID-19. We aim to present the first study in Malaysia to report the reproduction numbers and develop a mathematical model forecasting COVID-19 transmission by including isolation, quarantine, and movement control measures. We utilized a susceptible, exposed, infectious, and recovered (SEIR) model by incorporating isolation, quarantine, and movement control order (MCO) taken in Malaysia. The simulations were fitted into the Malaysian COVID-19 active case numbers, allowing approximation of parameters consisting of probability of transmission per contact (β), average number of contacts per day per case (ζ), and proportion of close-contact traced per day (q). The effective reproduction number (Rt) was also determined through this model. Our model calibration estimated that (β), (ζ), and (q) were 0.052, 25 persons, and 0.23, respectively. The (Rt) was estimated to be 1.68. MCO measures reduce the peak number of active COVID-19 cases by 99.1% and reduce (ζ) from 25 (pre-MCO) to 7 (during MCO). The flattening of the epidemic curve was also observed with the implementation of these control measures. We conclude that isolation, quarantine, and MCO measures are essential to break the transmission of COVID-19 in Malaysia.
  4. Labadin J, Hong BH, Tiong WK, Gill BS, Perera D, Rigit ARH, et al.
    Multimed Tools Appl, 2023;82(11):17415-17436.
    PMID: 36404933 DOI: 10.1007/s11042-022-14120-3
    Traditionally, dengue is controlled by fogging, and the prime location for the control measure is at the patient's residence. However, when Malaysia was hit by the first wave of the Coronavirus disease (COVID-19), and the government-imposed movement control order, dengue cases have decreased by more than 30% from the previous year. This implies that residential areas may not be the prime locations for dengue-infected mosquitoes. The existing early warning system was focused on temporal prediction wherein the lack of consideration for spatial component at the microlevel and human mobility were not considered. Thus, we developed MozzHub, which is a web-based application system based on the bipartite network-based dengue model that is focused on identifying the source of dengue infection at a small spatial level (400 m) by integrating human mobility and environmental predictors. The model was earlier developed and validated; therefore, this study presents the design and implementation of the MozzHub system and the results of a preliminary pilot test and user acceptance of MozzHub in six district health offices in Malaysia. It was found that the MozzHub system is well received by the sample of end-users as it was demonstrated as a useful (77.4%), easy-to-operate system (80.6%), and has achieved adequate client satisfaction for its use (74.2%).
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links