In this project, several surrogate surfaces designed to directly measure Hg dry deposition were investigated. Static water surrogate surfaces (SWSS) containing deionized (DI), acidified water, or salt solutions, and a knife-edge surrogate surface (KSS) using quartz fiber filters (QFF), KCl-coated QFF and gold-coated QFF were evaluated as a means to directly measure mercury (Hg) dry deposition. The SWSS was hypothesized to collect deposited elemental mercury (Hg⁰), reactive gaseous/oxidized mercury (RGM), and mercury associated with particulate matter (Hg(p)) while the QFF, KCl-coated QFF, and gold-coated QFF on the KSS were hypothesized to collect Hg(p), RGM+Hg(p), and Hg⁰+RGM+Hg(p), respectively. The Hg flux measured by the DI water was significantly smaller than that captured by the acidified water, probably because Hg⁰ was oxidized to Hg²+ which stabilized the deposited Hg and decreased mass transfer resistance. Acidified BrCl, which efficiently oxidizes Hg⁰, captured significantly more Hg than other solutions. However, of all collection media, gold-coated QFFs captured 6 to 100 times greater Hg mass than the other surfaces, probably because there is no surface resistance for Hg⁰ deposition to gold surfaces. In addition, the Hg⁰ concentration is usually 100-1000 times higher than RGM and Hg(p). For all other media, co-located samples were not significantly different, and the combination of daytime plus nighttime results were comparable to 24-h samples, implying that Hg⁰, RGM and Hg(p) were not released after they deposited nor did the surfaces reach equilibrium with the atmosphere. Based on measured Hg ambient air concentrations and fluxes, dry deposition velocities of RGM and Hg⁰ to DI water and other surfaces were 5.6±5.4 and 0.005-0.68 cm s⁻¹ in this study, respectively. These results suggest surrogate surfaces can be used to measure Hg dry deposition; however, extrapolating the results to natural surface can be challenging.
Air pollution is a widely discussed topic amongst the academic and industrial spheres as it can bring adverse effects to human health and economic loss. As humans spend most of their time at the office and at home, good indoor air quality with enriched oxygen concentration is particularly important. In this study, polysulfone (PSF) hollow fiber membranes fabricated by dry-jet wet phase inversion method were coated by a layer of polydimethylsiloxane (PDMS) or poly(ether block amide) (PEBAX) at different concentrations and used to evaluate their performance in gas separation for oxygen enrichment. The surface-coated membranes were characterized using SEM and EDX to determine the coating layer thickness and surface chemical properties, respectively. Results from the gas permeation study revealed that the PSF membrane coated with PDMS offered higher permeance and selectivity compared to the membrane coated with PEBAX. The best performing PDMS-coated membrane demonstrated oxygen and nitrogen gas permeance of 18.31 and 4.01 GPU, respectively with oxygen/nitrogen selectivity of 4.56. Meanwhile, the PEBAX-coated membrane only showed 12.23 and 3.11 GPU for oxygen and nitrogen gas, respectively with a selectivity of 3.94. It can be concluded the PDMS coating is more promising for PSF hollow fiber membrane compared to the PEBAX coating for the oxygen enrichment process.
The scarcity of energy and water resources is a major challenge for humanity in the twenty-first century. Engineered osmosis (EO) technologies are extensively researched as a means of producing sustainable water and energy. This study focuses on the modification of substrate properties of thin film nanocomposite (TFN) membrane using aluminium oxide (Al2O3) nanoparticles and further evaluates the performance of resultant membranes for EO process. Different Al2O3 loading ranging from zero to 0.10 wt% was incorporated into the substrate and the results showed that the hydrophilicity of substrate was increased with contact angle reduced from 74.81° to 66.17° upon the Al2O3 incorporation. Furthermore, the addition of Al2O3 resulted in the formation of larger porous structure on the bottom part of substrate which reduced water transport resistance. Using the substrate modified by 0.02 wt% Al2O3, we could produce the TFN membrane that exhibited the highest water permeability (1.32 L/m2.h.bar, DI water as a feed solution at 15 bar), decent salt rejection (96.89%), low structural parameter (532.44 μm) and relatively good pressure withstandability (>25 bar).
Proton exchange membranes (PEMs) with superior characteristics are needed to advance fuel cell technology. Nafion, the most used PEM in direct methanol fuel cells (DMFCs), has excellent proton conductivity but suffers from high methanol permeability and long-term performance degradation. Thus, this study aimed to create a healable PEM with improved durability and methanol barrier properties by combining sulfonated poly(ether ether ketone) (SPEEK) and poly-vinyl alcohol (PVA). The effect of changing the N,N-dimethylacetamide (DMAc) solvent concentration during membrane casting was investigated. Lower DMAc concentrations improved water absorption and, thus, membrane proton conductivity, but methanol permeability increased correspondingly. For the best trade-off between these two characteristics, the blend membrane with a 10 wt% DMAc solvent (SP10) exhibited the highest selectivity. SP10 also showed a remarkable self-healing capacity by regaining 88% of its pre-damage methanol-blocking efficiency. The ability to self-heal decreased with the increasing solvent concentration because of the increased crosslinking density and structure compactness, which reduced chain mobility. Optimizing the solvent concentration during membrane preparation is therefore an important factor in improving membrane performance in DMFCs. With its exceptional methanol barrier and self-healing characteristics, the pioneering SPEEK/PVA blend membrane may contribute to efficient and durable fuel cell systems.