Displaying all 2 publications

Abstract:
Sort:
  1. Hapuarachchi HC, Bandara KB, Sumanadasa SD, Hapugoda MD, Lai YL, Lee KS, et al.
    J Gen Virol, 2010 Apr;91(Pt 4):1067-76.
    PMID: 19955565 DOI: 10.1099/vir.0.015743-0
    Chikungunya fever swept across many South and South-east Asian countries, following extensive outbreaks in the Indian Ocean Islands in 2005. However, molecular epidemiological data to explain the recent spread and evolution of Chikungunya virus (CHIKV) in the Asian region are still limited. This study describes the genetic Characteristics and evolutionary relationships of CHIKV strains that emerged in Sri Lanka and Singapore during 2006-2008. The viruses isolated in Singapore also included those imported from the Maldives (n=1), India (n=2) and Malaysia (n=31). All analysed strains belonged to the East, Central and South African (ECSA) lineage and were evolutionarily more related to Indian than to Indian Ocean Islands strains. Unique genetic characteristics revealed five genetically distinct subpopulations of CHIKV in Sri Lanka and Singapore, which were likely to have emerged through multiple, independent introductions. The evolutionary network based on E1 gene sequences indicated the acquisition of an alanine to valine 226 substitution (E1-A226V) by virus strains of the Indian sublineage as a key evolutionary event that contributed to the transmission and spatial distribution of CHIKV in the region. The E1-A226V substitution was found in 95.7 % (133/139) of analysed isolates in 2008, highlighting the widespread establishment of mutated CHIKV strains in Sri Lanka, Singapore and Malaysia. As the E1-A226V substitution is known to enhance the transmissibility of CHIKV by Aedes albopictus mosquitoes, this observation has important implications for the design of vector control strategies to fight the virus in regions at risk of chikungunya fever.
  2. Ismail R, Cionita T, Lai YL, Fitriyana DF, Siregar JP, Bayuseno AP, et al.
    Materials (Basel), 2022 Dec 04;15(23).
    PMID: 36500143 DOI: 10.3390/ma15238641
    Recently, there has been an increase in the number of studies conducted on the process of developing hydroxyapatite (HA) to use in biocomposites. HA can be derived from natural sources such as bovine bone. The HA usage obtained from green mussel shells in biocomposites in this study will be explored. The research goal is to investigate the composition effect of biomaterials derived from polycaprolactone (PCL), polylactic acid (PLA), as well as HA obtained from green mussel shells with a chemical blending method on mechanical properties and degradation rate. First, 80 mL of chloroform solution was utilized to immerse 16 g of the PLA/PCL mixture with the ratios of 85:15 and 60:40 for 30 min. A magnetic stirrer was used to mix the solution for an additional 30 min at a temperature and speed of 50 °C and 300 rpm. Next, the hydroxyapatite (HA) was added in percentages of 5%, 10%, and 15%, as well as 20% of the PLA/PCL mixture's total weight. It was then stirred for 1 h at 100 rpm at 65 °C to produce a homogeneous mixture of HA and polymer. The biocomposite mixture was then added into a glass mold as per ASTM D790. Following this, biocomposite specimens were tested for their density, biodegradability, and three points of bending in determining the effect of HA and polymer composition on the degradation rate and mechanical properties. According to the findings of this study, increasing the HA and PLA composition yields a rise in the mechanical properties of the biocomposites. However, the biocomposite degradation rate is increasing.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links