Displaying all 2 publications

Abstract:
Sort:
  1. Daramola J, Ekhwan TM, Mokhtar J, Lam KC, Adeogun GA
    Heliyon, 2019 Jul;5(7):e02106.
    PMID: 31372557 DOI: 10.1016/j.heliyon.2019.e02106
    Over the years, sedimentation has posed a great danger to the storage capacity of hydropower reservoirs. Good understanding of the transport system and hydrological processes in the dam is very crucial to its sustainability. Under optimal functionality, the Shiroro dam in Northern Nigeria can generate ∼600 MW, which is ideally sufficient to power about 404,000 household. Unfortunately, there have not been reliable monitoring measures to assess yield in the upstream, where sediments are sourced into the dam. In this study, we applied the Soil and Water Assessment Tool (SWAT) to predict the hydrological processes, the sediment transport mechanism and sediment yield between 1990 and 2018 in Kaduna watershed (32,124 km2) located upstream of the dam. The model was calibrated and validated using observed flow and suspended sediment concentration (SSC) data. Performance evaluation of the model was achieved statistically using Nash-Sutcliffe (NS), coefficient of determination (r2) and percentage of observed data (p-factor). SWAT model evaluation using NS (0.71), r2 (0.80) and p-factors of 0.86 suggests that the model performed satisfactorily for streamflow and sediment yield predictions. The model identified the threshold depth of water (GWQMN.gw) and base flow (ALPHA_BF.gw) as the most sensitive parameters for streamflow and sediment yield estimation in the watershed. Our finding showed that an estimated suspended sediment yield of about 84.1 t/ha/yr was deposited within the period under study. Basins 67, 71 and 62 have erosion prone area with the highest sediment values of 79.4, 75.1 and 73.8 t/h respectively. Best management practice is highly recommended for the dam sustainability, because of the proximity of erosion-prone basins to the dam.
  2. Daramola J, M Ekhwan T, Adepehin EJ, Mokhtar J, Lam KC, Er AC
    Heliyon, 2019 Jul;5(7):e02121.
    PMID: 31384682 DOI: 10.1016/j.heliyon.2019.e02121
    Water constitutes a major environmental and public health concerns worldwide. A large proportion of global water consumption is sourced from surface water. The dependency level on surface water is higher in developing countries, especially in rural-to-semi-urban areas, where subsurface water is not accessible. Presented in this paper is a spatiotemporal and hydrochemical quality assessment of the spring-originated Landzun Stream in Bida, Nigeria; which is usually consumed in its untreated state. Water samples were systematically collected in eighteen locations along the stream channel in both rainy and dry seasons at an equidistance interval of 500m. On-site and laboratory measurement of important physical and hydrochemical parameters were carried out using standard procedures. Water temperature in the rainy season (34-37 °C) slightly exceeds measured values in the dry season (29-33 °C). 72.22% (rainy) and 83.33% (dry) of collected samples did not meet the odourless requirement for drinking water. Similarly, estimated percentages of 66.67 and 94.44 of collected samples in rainy and dry seasons respectively have a taste. Contrary to data in the rainy season, 89%, 11%, 67% and 56% of the dry season's samples were enriched in magnesium (Mg), lead (Pb), potassium (K) and iron (Fe) respectively above the 2018 World Health Organisation guidelines for drinking water. This study further established that seasonal variation plays a major role in altering the aesthetic surface water quality. The intake of untreated surface water is a vehicle for potential water-borne diseases and allergies, hence alternative sources of drinking water for the populace dependent on the Landzun Stream is recommended to reduce risks and possible dangers of consuming the stream water.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links