Displaying all 13 publications

Abstract:
Sort:
  1. Abdul-Latiff MAB, Md-Zain BM
    Zool Stud, 2021;60:e50.
    PMID: 35003344 DOI: 10.6620/ZS.2021.60-50
    The pig-tailed macaque, Macaca nemestrina, which is distributed in Peninsular Malaysia, Thailand, Borneo, and Sumatra, has been the subject of unstable and changing taxonomic entity in the M. nemestrina group. This species is involved with a human-macaque conflict in Malaysia and at the same time played an important role in the ethnozoological culture of Malaysian. Even so, comprehensive phylogenetic, population genetics and biogeographical analysis of M. nemestrina in Malaysia are non-existent after decades of intensive research on the genus itself. Thus, we conducted the first comprehensive genetic study of M. nemestrina in Malaysia, based on three mitochondrial loci-Cytochrome b (567 bp), D-loop (398 bp), and COI (577 bp)-from 27 individuals representing Malaysia, plus an additional 26 sequences of Southeast Asian macaques from Genbank. Comparative biogeographical analysis in this study supports the positions of M. nemestrina in M. nemestrina groups as opposed to the silenus or Sulawesi groups. Results from this study also indicate that Bornean populations are the first extant lineages to separate from the other examined lineages of M. nemestrina, M. leonina, M. pagensis, and M. siberu in Southeast Asia. Molecular clock analysis suggested that M. nemestrina arrived in the Malay Peninsula about 0.32 million years ago (MYA). Our results indicate that the population of pig-tailed macaque from Perak (west Peninsular Malaysia) differs genetically based on all phylogenetic and population genetic analyses. Morphologically, Perak's pig-tailed macaque shows brighter coloration than M. n. nemestrina. Thus, we proposed a new subspecies for Perak's pig-tailed macaque as Macaca nemestrina perakensis distributed in the state of Perak, Peninsular Malaysia. This research helps resolve the taxonomic position and population genetics of pig-tailed macaque in Malaysia, which contribute directly to conservation and management of the species in Malaysia.
  2. Osman NA, Abdul-Latiff MAB, Mohd-Ridwan AR, Yaakop S, Nor SM, Md-Zain BM
    Animals (Basel), 2020 Nov 26;10(12).
    PMID: 33255964 DOI: 10.3390/ani10122215
    Understanding dietary diversity is a fundamental task in the study of stump-tailed macaque, Macaca arctoides in its natural habitat. However, direct feeding observation and morphological identification using fecal samples are not effective and nearly impossible to obtain in natural habitats because this species is sensitive to human presence. As ecological methods are challenging and time-consuming, DNA metabarcoding offers a more powerful assessment of the diet. We used a chloroplast tRNL DNA metabarcoding approach to identify the diversity of plants consumed by free-ranging M. arctoides in the Malaysia-Thailand border region located in Perlis State Park, Peninsular Malaysia. DNA was extracted from three fecal samples, and chloroplast tRNL DNA was amplified and sequenced using the Illumina MiniSeq platform. Sequences were analyzed using the CLC Genomic Workbench software. A total of 145 plant species from 46 families were successfully identified as being consumed by M. arctoides. The most abundant species were yellow saraca, Saraca thaipingensis (11.70%), common fig, Ficus carica (9.33%), aramata, Clathrotropis brachypetala (5.90%), sea fig, Ficus superba (5.44%), and envireira, Malmea dielsiana (1.70%). However, Clathrotropis and Malmea are not considered Malaysian trees because of limited data available from Malaysian plant DNA. Our study is the first to identify plant taxa up to the species level consumed by stump-tailed macaques based on a DNA metabarcoding approach. This result provides an important understanding on diet of wild M. arctoides that only reside in Perlis State Park, Malaysia.
  3. Abdul-Latiff MAB, Baharuddin H, Abdul-Patah P, Md-Zain BM
    Primates, 2019 Jan;60(1):63-79.
    PMID: 30471014 DOI: 10.1007/s10329-018-0699-y
    The disjunct distribution of Presbytis femoralis subspecies across Sumatra (P. f. percura), southern (P. f. femoralis) and northern (P. f. robinsoni) Peninsular Malaysia marks the unique vicariance events in the Sunda Shelf. However, the taxonomic positions and evolutionary history of P. f. femoralis are unresolved after decades of research. To elucidate this evolutionary history, we analyzed 501 base pairs of the mitochondrial HVSI gene from 25 individuals representing Malaysia's banded langur, with the addition of 29 sequences of Asian Presbytis from Genbank. Our results revealed closer affinity of P. f. femoralis to P. m. mitrata and P. m. sumatrana while maintaining the monophyletic state of P. f. femoralis as compared to P. f. robinsoni. Two central theses were inferred from the results; (1) P. f. femoralis does not belong in the same species classification as P. f. robinsoni, and (2) P. f. femoralis is the basal lineage of the Presbytis in Peninsular Malaysia. Proving the first hypothesis through genetic analysis, we reassigned P. f. femoralis of Malaysia to Presbytis neglectus (Schlegel's banded langur) (Schlegel in Revue Methodique, Museum d'Histoire Naturelle des Pays-Bas 7:1, 1876) following the International Code of Zoological Nomenclature (article 23.3). The ancestors of P. neglectus are hypothesized to have reached southern Peninsular Malaysia during the Pleistocene and survived in refugium along the western coast. Consequently, they radiated upward, forming P. f. robinsoni and P. siamensis resulting in the highly allopatric distribution in Peninsular Malaysia. This study has successfully resolved the taxonomic position of P. neglectus in Peninsular Malaysia while providing an alternative biogeographic theory for the Asian Presbytis.
  4. Osman NA, Abdul-Latiff MAB, Mohd-Ridwan AR, Yaakop S, Karuppannan KV, Md-Zain BM
    Biodivers Data J, 2022;10:e89617.
    PMID: 36761533 DOI: 10.3897/BDJ.10.e89617
    The long-tailed macaque (Macacafascicularis) has a wide range in both Peninsular Malaysia and Borneo. Although the primates are especially vulnerable to habitat alterations, this primate lives in disturbed habitats due to human-induced land-use. Thus, this study presents a faecal metabarcoding approach to clarify the plant diet of long-tailed macaques from five locations in Peninsular Malaysia to represent fragmented forest, forest edge, island and recreational park habitats. We extracted genomic DNA from 53 long-tailed macaque faecal samples. We found 47 orders, 126 families, 609 genera and 818 species across these five localities. A total of 113 plant families were consumed by long-tailed macaques in Universiti Kebangsaan Malaysia, 61 in the Malaysia Genome and Vaccine Institute, 33 in Langkawi Island, 53 in Redang Island and 44 in the Cenderawasih Cave. Moraceae (33.24%) and Fabaceae (13.63%) were the most common families consumed by long-tailed macaques from the study localities. We found that habitat type impacted diet composition, indicating the flexibility of foraging activities. This research findings provide an understanding of plant dietary diversity and the adaptability of this macaque with the current alteration level that applies to long-tailed macaque conservation management interest in the future.
  5. Miga M, Jahari PNS, Parimannan S, Rajandas H, Latiff MAB, Jing Wei Y, et al.
    Mitochondrial DNA B Resour, 2023;8(2):292-296.
    PMID: 36845007 DOI: 10.1080/23802359.2023.2179355
    In the present study, the nearly complete mitochondrial genome of Euphaea ochracea was described and its phylogenetic position in the family Euphaeidae was analyzed. Here, we recovered 13 protein-coding genes, 22 transfer RNAs, 2 ribosomal RNAs and a partial control region, resulting in a mitogenome length of 15,545bp. All protein-coding genes were initiated by the typical ATN codon except nad3 and nad1, which utilizes the TTG codon. Four protein-coding genes (cox1, cox2, cox3 and nad5) are terminated by an incomplete stop codon T, while others end with either a TAA or TAG codon. The intergenic spacer region, S5, is absent in this mitogenome, supporting the lack of this region as a specific character in damselflies. Phylogenetic analysis showed that the newly sequenced E. ochracea is phylogenetically closer to E. ornata with a high support value.
  6. Mohd-Yusof NS, Abdul-Latiff MAB, Mohd-Ridwan AR, Badrulisham AS, Othman N, Yaakop S, et al.
    Biodivers Data J, 2022;10:e69631.
    PMID: 36761502 DOI: 10.3897/BDJ.10.e69631
    Flying fox (Pteropushypomelanus) belongs to the frugivorous bats, which play a crucial role in maintaining proper functioning of an ecosystem and conservation of the environment. Bats are well-known carriers of pathogenic viruses, such as BatCov RaTG13 from the coronavirus family that share 90.55% with SARS-CoV-2, the pathogen causing recent global pandemic coronavirus disease 19 (COVID-19). However, bats' possible role as a carrier of pathogenic bacteria is less explored. Here, using metabarcoding analysis through high-throughput sequencing, we explored the gut microbiome composition of different island populations on the east and west coasts of Peninsula Malaysia. The 16S rRNA gene in samples from Redang Island, Langkawi Island, Pangkor Island and Tinggi Island was amplified. Bacterial community composition and structure were analysed with α and β diversity metrics. A total of 25,658 operational taxonomic units at 97% similarity were assigned to eight phyla, 44 families, 61 genera and 94 species of microbes. The Proteobacteria was the dominant phylum in all populations. Meanwhile, the genera Enterobacter, Pseudomonas and Klebsiella, isolated in this study, were previously found in the rectum of other fruit bats. Our analyses suggest that Redang Island and Langkawi Island have high bacteria diversity. Thus, we found geographic locality is a strong predictor of microbial community composition and observed a positive correlation between ecological features and bacterial richness.
  7. Miga M, Jahari PNS, Parimannan S, Rajandas H, Abdul-Latiff MAB, Wei YJ, et al.
    Data Brief, 2023 Jun;48:109253.
    PMID: 37383759 DOI: 10.1016/j.dib.2023.109253
    Ischyja marapok is a moth species from the genus Ischyja, a member of the Lepidoptera family, Erebidae. Due to their wide variation, this family constitutes the largest described species, however, the mitogenome dataset on the genus Ischyja is scarce. Hence, the mitochondrial genome dataset of Ischyja marapok from Malaysia was completely sequenced using the next-generation sequencing technology, Illumina NovaSeq 6000 and analyzed. The mitogenome has a sequence length of 15,421 bp, consisting of 13 protein-coding genes (PCGs), 22 transfer RNAs (tRNAs), 2 ribosomal RNAs (rRNAs) and a control region. The mitogenome is A + T biased (80.6%), with the base composition of A (39.2%), T (41.4%), C (11.9%) and G (7.5%). Among the 13 PCGs, 12 were initiated by the standard ATN codon, except for COX1 which utilizes the CGA start codon. Two PCGs were terminated with an incomplete stop codon T, while others ended with a TAA codon. Phylogenetic tree analyses showed that the sequenced I. marapok resides within the Erebinae subfamily and is closely related to Ischyja manlia (MW664367) with high bootstrap support and posterior probabilities. This dataset presented the mitogenome data of I. marapok from Malaysia, which is valuable for further research of their phylogeny and the diversification of the Ischyja genus. Also, this dataset can be implemented and used as references to assess environmental changes in the terrestrial ecosystem via environmental DNA approaches. The mitogenome of I. marapok is available in GenBank under the accession number ON165249.
  8. Sariyati NH, Abdul-Latiff MAB, Aifat NR, Mohd-Ridwan AR, Osman NA, Karuppannan KV, et al.
    Biodivers Data J, 2024;12:e120314.
    PMID: 38707255 DOI: 10.3897/BDJ.12.e120314
    Siamangs (Symphalangussyndactylus) are native to Peninsular Malaysia, Sumatra and southern Thailand and their taxonomical classification at subspecies level remains unclear. Morphologically, two subspecies were proposed as early as 1908 by Thomas namely Symphalangus s.syndactylus and Symphalanguss.continentis. Thus, this study aims to clarify the Siamang subspecies status, based on mtDNA D-loop sequences. Faecal samples were collected from wild Siamang populations at different localities in Peninsular Malaysia. A 600-bp sequence of the mitochondrial D-loop region was amplified from faecal DNA extracts and analysed along with GenBank sequences representing Symphalangus sp., Nomascus sp., Hylobates sp., Hoolock sp. and outgroups (Pongopygmaeus, Macacafascicularis and Papiopapio). The molecular phylogenetic analysis in this study revealed two distinct clades formed by S.s.syndactylus and S.s.continentis which supports the previous morphological delineation of the existence of two subspecies. Biogeographical analysis indicated that the Sumatran population lineage was split from the Peninsular Malaysian population lineage and a diversification occurrred in the Pliocene era (~ 3.12 MYA) through southward expansion. This postulation was supported by the molecular clock, which illustrated that the Peninsular Malaysian population (~ 1.92 MYA) diverged earlier than the Sumatran population (~ 1.85 MYA). This is the first study to use a molecular approach to validate the subspecies statuses of S.s.syndactylus and S.s.continentis. This finding will be useful for conservation management, for example, during Siamang translocation and investigations into illegal pet trade and forensics involving Malayan and Sumatran Siamangs.
  9. Najmuddin MF, Haris H, Othman N, Zahari F, Mohd-Ridwan AR, Md-Zain BM, et al.
    Data Brief, 2020 Aug;31:105727.
    PMID: 32548216 DOI: 10.1016/j.dib.2020.105727
    Morphism refer to polymorphic species, in which multiple colour variants coexist within a population. Morphism in primates is common and langurs also exhibit certain characteristics of morphism, such as conspicuous natal coats. Banded langurs (Presbytis femoralis) and dusky leaf monkey (Trachypithecus obscurus) exhibits the same characteristics of conspicuous natal coats, but these coats are only limited to infants and changed when they reached adulthood. This article reports the first discovery of rare brown morph of two adult male banded langurs and one leucistic adult female dusky leaf monkey in Malaysia. We also conducted a systematic literature search to review the diversity of morphism in leaf monkey globally.
  10. Ramli FF, Munian K, Mahyudin NAA, Othman N, Haris H, Abdullah-Fauzi NAF, et al.
    Biodivers Data J, 2024;12:e108476.
    PMID: 38235165 DOI: 10.3897/BDJ.12.e108476
    Malaysia is blessed with lush tropical rainforests that harbour an exceptional diversity of amphibians and reptiles. However, compared to other animal groups, amphibians and reptiles have received limited attention in research, despite their ecological significance. With amphibians and reptile species having been declining rapidly due to anthropogenic activities, there is a pressing need to conserve these species and their habitats. Environmentally Sensitive Areas (ESAs) are designated regions that are beneficial due to their critical role in providing essential ecosystem services and serving as repositories of biodiversity. Nonetheless, the classification of ESAs in Malaysia lacks biological elements and only focuses on physical attributes. To enhance the current ESA classification framework by integrating biological components, there is an urgent need to obtain information on diversity and habitat in Malaysia. Therefore, the objectives of this study were twofold: to determine the diversity of amphibians and reptiles in Gunung Belumut Amenity Forest and to conduct a comparative analysis between the herpetofauna assemblages in Gunung Belumut with other forest reserves in Peninsular Malaysia. The survey was carried out between March and June 2022, with additional sampling conducted in February 2023. The Visual Encounter Survey (VES) and pitfall trap methods were employed to survey the herpetofauna species, focusing on both aquatic and terrestrial habitats within the study area. A total of 210 individuals representing 38 species of herpetofauna were recorded, comprising 18 amphibian and 20 reptile species. Amongst the observed species, Limnonectesblythii was the most frequently encountered amphibian, with 59 individuals observed, while the dominant reptile species was Cyrtodactylusconsobrinus, represented by eight individuals. This pioneering study serves as a vital baseline documentation of the amphibian and reptile assemblages in Gunung Belumut Amenity Forest. It provides valuable information for identifying extant herpetofauna species, including those of potential conservation concern or rarity. These findings contribute to ongoing conservation efforts dedicated to the preservation of herpetofauna within the region. By understanding the diversity and distribution patterns of amphibians and reptiles in Gunung Belumut, effective conservation strategies can be developed to protect these species and their habitats.
  11. Munian K, Ramli FF, Othman N, Mahyudin NAA, Sariyati NH, Abdullah-Fauzi NAF, et al.
    Mol Ecol Resour, 2024 May;24(4):e13936.
    PMID: 38419264 DOI: 10.1111/1755-0998.13936
    The approach of combining cost-effective nanopore sequencing and emerging environmental DNA (eDNA) metabarcoding could prove to be a promising tool for biodiversity documentation, especially in Malaysia. Given the substantial funding constraints in recent years, especially in relation to the country's biodiversity, many researchers have been limited to conduct restricted research without extended monitoring periods, potentially hindering comprehensive surveys and could compromise the conservation efforts. Therefore, the present study aimed to evaluate the application of eDNA metabarcoding on freshwater fish using short reads generated through nanopore sequencing. This assessment focused on species detection in three selected rivers within the Endau Rompin Landscape in Malaysia. Additionally, the study compared levels of species detection between eDNA metabarcoding and conventional sampling methods, examined the effectiveness of primer choice, and applied both metabarcoding and shotgun sequencing to the eDNA approach. We successfully identified a total of 22 and 71 species with an identification threshold of >97% and >90%, respectively, through the MinION platform. The eDNA metabarcoding approach detected over 13% more freshwater fish species than when the conventional method was used. Notably, the distinction in freshwater fish detection between eDNA primers for 12S rRNA and cytochrome oxidase I was insignificant. The cost for eDNA metabarcoding proved to be more effective compared to conventional sampling with cost reduction at 33.4%. With favourable cost-effectiveness and increased species detection, eDNA metabarcoding could complement existing methods, enhance holistic diversity documentation for targeted habitats and facilitate effective conservation planning.
  12. Haris H, Othman N, Kaviarasu M, Najmuddin MF, Abdullah-Fauzi NAF, Ramli FF, et al.
    Am J Primatol, 2024 May 02.
    PMID: 38698704 DOI: 10.1002/ajp.23631
    The banded langur (Presbytis femoralis) is a critically endangered primate, restricted to Johor, Malaysia, with an estimated population size of less than 500 individuals. Traditionally, distribution studies on this highly threatened primate have relied on conventional methods such as DNA identification, live counting, and camera trapping. However, ethnoprimatology offers an alternative approach to data collection, involving the active participation of indigenous and local communities possessing valuable knowledge and experience with local primate species. This study employed an integrated approach incorporating ethnoprimatology by utilizing pooled local expert opinion, local surveys, interviews, and fecal DNA analysis, resulting in a novel distribution range for the banded langur. The combination of expert opinions revealed this species' most optimistic distribution scenario across Johor and Pahang, inhabiting various ecosystems, including lowland forests, peat swamps, and human-modified landscapes. Further interviews and surveys conducted within the Orang Asli community in Tasik Chini and Tasek Bera have provided additional support for the revised distribution, documenting occurrences of banded langur utilization in indigenous practices, such as food consumption, cultural beliefs, medicinal applications, and craftsmanship. Phylogenetic analysis demonstrated genetic differentiation between populations in Johor and Pahang, with the populations in the southern part of Peninsular Malaysia likely serving as ancestral sources for other populations. Consequently, this study not only elucidated the updated distribution of banded langur through DNA records and direct observations but also established the efficacy of ethnoprimatology as a precursory tool for uncovering the present distribution patterns of other primate species in Malaysia.
  13. Abdullah-Fauzi NAF, Karuppannan KV, Mohd-Radzi NHS, Gani M, Mohd-Ridwan AR, Othman N, et al.
    Zool Stud, 2022;61:e60.
    PMID: 37007822 DOI: 10.6620/ZS.2022.61-60
    The world's largest terrestrial mammal, Asian elephants, are known to have enormous feeding needs. Several factors such as season, sex, age, and daily activities influence the amount of food required by an individual. Generally, captive elephants have a limited choice of food on a daily basis compared with that of elephants in the wild. Elephants in captivity are fed according to a prepared feeding schedule, whereas wild elephants are free to choose the type of plants that they consume in their natural habitat. In the past, ecological observations have been widely used to determine the diet of wild elephants. However, the molecular approach has never been carried out. In the present study, we aimed to; 1) identify the plant diet of wild Asian elephants in Taman Negara National Park (TNNP) according to their sex and age using high-throughput DNA metabarcoding; and 2) determine the dietary formulation of captive elephants based on the generated plant metabarcoding database. DNA was extracted from 24 individual fecal samples collected using noninvasive sampling techniques from TNNP and the National Elephant Conservation Centre (NECC) Kuala Gandah. Seven pooled samples from male adult, female adult, male subadult, female subadult, male juvenile, female juvenile, and captive elephants were amplified and sequenced targeting the trnL region (50-150 base pairs). The CLC Genomic Workbench and PAST 4.02 software were used for data analysis. In total, 24 orders, 41 families, 233 genera, and 306 species of plants were successfully detected in the diet of the Asian elephants. The most abundant plant genera consumed were Sporobolus (21.88%), Musa (21.48%), and Ficus (10.80%). Plant variation was lower in samples from male elephants than in those from female elephants. The plant species identified were correlated with the nutrient benefits required by elephants. Adults and subadults consumed more plant species than were consumed by juvenile elephants. However, there was no significant difference between ages and sexes. The findings of this study can be used as guidance by the Department of Wildlife and National Parks for the management of captive elephants, especially in NECC Kuala Gandah.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links