Anomalies in DNA replication, repair and recombination in ataxia-telangiectasia (A-T) point to a defect in structure or function of chromatin. In this study we have compared DNA-protein binding in nuclear extracts from control and A-T cells using two assay systems, filter-binding and DNA-accessibility. Interestingly, the extent of DNA protein binding over a range of protein concentration was significantly lower in A-T extracts. In addition the accessibility of the restriction enzyme Eco R1 to protein-bound plasmid was greater when A-T extracts were used. This is in keeping with the reduced binding observed in the filter-binding assay.
DNA topoisomerase type I and II activities were determined by serial dilution in nuclear extracts from control and ataxia-telangiectasia lymphoblastoid cells. Topoisomerase I activity, assayed by relaxation of supercoiled plasmid DNA, was found to be approximately the same in both cell types. In order to remove interference from topoisomerase I, the activity of topoisomerase II was measured by the unknotting of knotted P4 phage DNA in the presence of ATP. The activity of topoisomerase II was markedly reduced in two ataxia-telangiectasia cell lines, AT2ABR and AT8ABR, compared to controls. This reduction in activity was detected with increasing concentration of protein and in time course experiments at a single protein concentration. A third cell line, AT3ABR, did not have a detectably lower activity of topoisomerase II when assayed under these conditions. The difference in topoisomerase II activity in the ataxia-telangiectasia cell lines examined may reflect to some extent the heterogeneity observed in this syndrome.
Autosomal recessive ataxias are a clinically diverse group of syndromes that in some cases are caused by mutations in genes with roles in the DNA damage response, transcriptional regulation or mitochondrial function. One of these ataxias, known as Autosomal Recessive Cerebellar Ataxia Type-2 (ARCA-2, also known as SCAR9/COQ10D4; OMIM: #612016), arises due to mutations in the ADCK3 gene. The product of this gene (ADCK3) is an atypical kinase that is thought to play a regulatory role in coenzyme Q10 (CoQ10) biosynthesis. Although much work has been performed on the S. cerevisiae orthologue of ADCK3, the cellular and biochemical role of its mammalian counterpart, and why mutations in this gene lead to human disease is poorly understood. Here, we demonstrate that ADCK3 localises to mitochondrial cristae and is targeted to this organelle via the presence of an N-terminal localisation signal. Consistent with a role in CoQ10 biosynthesis, ADCK3 deficiency decreased cellular CoQ10 content. In addition, endogenous ADCK3 was found to associate in vitro with recombinant Coq3, Coq5, Coq7 and Coq9, components of the CoQ10 biosynthetic machinery. Furthermore, cell lines derived from ARCA-2 patients display signs of oxidative stress, defects in mitochondrial homeostasis and increases in lysosomal content. Together, these data shed light on the possible molecular role of ADCK3 and provide insight into the cellular pathways affected in ARCA-2 patients.