Displaying all 2 publications

Abstract:
Sort:
  1. Wong KW, Teh SS, Law KP, Ismail IS, Sato K, Mase N, et al.
    Arch Pharm (Weinheim), 2023 Jan;356(1):e2200418.
    PMID: 36285691 DOI: 10.1002/ardp.202200418
    Oxidative stress and its constant companion, inflammation, play a critical part in the pathogenesis of many acute and chronic illnesses. The discovery of new multi-targeted drug candidates with antioxidant and anti-inflammatory properties is deemed necessary. Thus, a series of novel xanthone derivatives with halogenated benzyl (4b-4d, 4f-4h) and methoxylated benzyl groups (4e) attached to the butoxy amine substituent were synthesized in this study. The synthesized xanthone derivatives exhibited stronger antioxidant activity against H2 O2 scavenging than the standard drug, α-tocopherol, but weaker towards DPPH scavenging and ferrous ion chelation. Besides that, 4b-4d, 4f-4h demonstrated good anti-inflammatory activities through NO production inhibition towards lipopolysaccharide (LPS)-induced RAW 264.7 cells and showed 2-4 times stronger effects than the standard drug, diclofenac sodium. Moreover, compound 4b with two brominated benzyl groups attached to the butoxy amine substituent suppressed the production of pro-inflammatory cytokines, TNF-α and IL-1β, significantly. Structure-activity relationship elucidated that the halogenated benzylamine substituent plays an important role in contributing the antioxidant and anti-inflammatory activities of xanthones. In summary, xanthone 4b was identified as a potential lead compound to be further developed into antioxidant and anti-inflammatory drugs. Thus, further studies on the related mechanisms of action of 4b are recommended.
  2. Gunter NV, Teh SS, Jantan I, Law KP, Morita H, Mah SH
    Phytother Res, 2024 Feb 19.
    PMID: 38372084 DOI: 10.1002/ptr.8160
    Oxidative stress is implicated in the initiation, pathogenesis, and progression of various gastric inflammatory diseases (GID). The prevalence of these diseases remains a concern along with the increasing risks of adverse effects in current clinical interventions. Hence, new gastroprotective agents capable of inhibiting oxidative stress by modulating cellular defense systems such as the nuclear factor erythroid 2-related factor 2 (Nrf2)/antioxidant response element (ARE) signaling pathway are critically needed to address these issues. A candidate to solve the present issue is xanthone, a natural compound that reportedly exerts gastroprotective effects via antioxidant, anti-inflammatory, and cytoprotective mechanisms. Moreover, xanthone derivatives were shown to modulate the Nrf2/ARE signaling pathway to counter oxidative stress in both in vitro and in vivo models. Thirteen natural xanthones have demonstrated the ability to modulate the Nrf2/ARE signaling pathway and have high potential as lead compounds for GID as indicated by their in vivo gastroprotective action-particularly mangiferin (2), α-mangostin (3), and γ-mangostin (4). Further studies on these compounds are recommended to validate the Nrf2 modulatory ability in relation to their gastroprotective action.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links