Displaying all 2 publications

Abstract:
Sort:
  1. Karimi-Googhari, Shahram, Huang, Yuk Feng, Abdul Halim B. Ghazali, Lee, Teang Shui
    MyJurnal
    Proper integrated management of a dam reservoir requires that all components of the water resource system be known. One of these components is the daily reservoir inflow which is the subject matter of this study, i.e. to establish predictions of what is coming in the next rainfall-runoff process over a catchment. The transformation of rainfall into runoff is an extremely complex, dynamic, and more of a non-linear process. The available six-year average daily rainfall data across the Sembrong dam catchment were computed using the well-known Theissen’s polygon method. Daily reservoir inflow data were extracted by applying the water balance model to the Sembrong dam reservoir. Modelling of relationship between rainfall and reservoir inflow data was done using feed-forward back-propagation neural networks. The final selected model has one hidden layer with 11 neurons in the hidden layer. The selected model was applied for an independent data series testing. Results in relation to specific climatic and hydrologic properties of a small tropical catchment suggested that the model is suitable to be used in forecasting the next day’s reservoir inflow. The efficiencies of the model Abtained indicated the validity of using the neural network for modelling reservoir inflow series.
  2. Hamidreza Salemi, Mohd Amin Mohd Soom, Lee, Teang Shui, Mohd Kamil Yusoff
    MyJurnal
    One of the most interesting water management case studies in Iran is the case of Zayandehrud River, the main river that supplies water to Isfahan Province which is located in Gavkhuni River Basin (GRB). This paper examines the present and future demands for water and determines the extent to which water will be available for agricultural use by the year 2020. Although demand and supply conditions in 2000 were more or less in balance, there was an increase in the supply of some 28% by 2010 due to the completion of the third trans-basin diversion and the development of other local water sources. However, the demand exceeded its supply in 2010 and the basin fell into severe deficit. In this condition, the only way to keep supply and demand in balance is to reduce allocations to agriculture. By 2020, agriculture would only have 5% more water than the present and water supply is only 90% that of the normal, and this would then shrink from 2025 onwards. In other words, agriculture would have to be sacrificed in order to ensure full supplies of water for the other sectors. The scenarios examined reveal that a sustainable agriculture can only be accomplished by water saving practices and management measures, which may further lead to reduced demand, control supplies, and improve the efficiency of water use.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links