Displaying all 3 publications

Abstract:
Sort:
  1. Mirsafian H, Ripen AM, Leong WM, Manaharan T, Mohamad SB, Merican AF
    Genomics, 2017 Oct;109(5-6):463-470.
    PMID: 28733102 DOI: 10.1016/j.ygeno.2017.07.003
    Differential gene and transcript expression pattern of human primary monocytes from healthy young subjects were profiled under different sequencing depths (50M, 100M, and 200M reads). The raw data consisted of 1.3 billion reads generated from RNA sequencing (RNA-Seq) experiments. A total of 17,657 genes and 75,392 transcripts were obtained at sequencing depth of 200M. Total splice junction reads showed an even more significant increase. Comparative analysis of the expression patterns of immune-related genes revealed a total of 217 differentially expressed (DE) protein-coding genes and 50 DE novel transcripts, in which 40 DE protein-coding genes were related to the immune system. At higher sequencing depth, more genes, known and novel transcripts were identified and larger proportion of reads were allowed to map across splice junctions. The results also showed that increase in sequencing depth has no effect on the sequence alignment.
  2. Leong WM, Ripen AM, Mirsafian H, Mohamad SB, Merican AF
    Genomics, 2019 07;111(4):899-905.
    PMID: 29885984 DOI: 10.1016/j.ygeno.2018.05.019
    High-depth next generation sequencing data provide valuable insights into the number and distribution of RNA editing events. Here, we report the RNA editing events at cellular level of human primary monocyte using high-depth whole genomic and transcriptomic sequencing data. We identified over a ten thousand putative RNA editing sites and 69% of the sites were A-to-I editing sites. The sites enriched in repetitive sequences and intronic regions. High-depth sequencing datasets revealed that 90% of the canonical sites were edited at lower frequencies (<0.7). Single and multiple human monocytes and brain tissues samples were analyzed through genome sequence independent approach. The later approach was observed to identify more editing sites. Monocytes was observed to contain more C-to-U editing sites compared to brain tissues. Our results establish comparable pipeline that can address current limitations as well as demonstrate the potential for highly sensitive detection of RNA editing events in single cell type.
  3. Mirsafian H, Ripen AM, Leong WM, Chear CT, Bin Mohamad S, Merican AF
    Sci Rep, 2017 07 28;7(1):6836.
    PMID: 28754963 DOI: 10.1038/s41598-017-06342-5
    X-linked agammaglobulinemia (XLA) is a rare genetic disorder, caused by mutations in BTK (Bruton's Tyrosine Kinase) gene. Deep high-throughput RNA sequencing (RNA-Seq) approach was utilized to explore the possible differences in transcriptome profiles of primary monocytes in XLA patients compared with healthy subjects. Our analysis revealed the differences in expression of 1,827 protein-coding genes, 95 annotated long non-coding RNAs (lncRNAs) and 20 novel lincRNAs between XLA patients and healthy subjects. GO and KEGG pathway analysis of differentially expressed (DE) protein-coding genes showed downregulation of several innate immune-related genes and upregulation of oxidative phosphorylation and apoptosis-related genes in XLA patients compared to the healthy subjects. Moreover, the functional prediction analysis of DE lncRNAs revealed their potential role in regulating the monocytes cell cycle and apoptosis in XLA patients. Our results suggested that BTK mutations may contribute to the dysregulation of innate immune system and increase susceptibility to apoptosis in monocytes of XLA patients. This study provides significant finding on the regulation of BTK gene in monocytes and the potential for development of innovative biomarkers and therapeutic monitoring strategies to increase the quality of life in XLA patients.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links