Displaying all 3 publications

Abstract:
Sort:
  1. Liew YJM, Lee YK, Khalid N, Rahman NA, Tan BC
    PeerJ, 2020;8:e9094.
    PMID: 32391211 DOI: 10.7717/peerj.9094
    Flavonoids and prenylated flavonoids are active components in medicinal plant extracts which exhibit beneficial effects on human health. Prenylated flavonoids consist of a flavonoid core with a prenyl group attached to it. This prenylation process is catalyzed by prenyltranferases (PTs). At present, only a few flavonoid-related PT genes have been identified. In this study, we aimed to investigate the roles of PT in flavonoid production. We isolated a putative PT gene (designated as BrPT2) from a medicinal ginger, Boesenbergia rotunda. The deduced protein sequence shared highest gene sequence homology (81%) with the predicted homogentisate phytyltransferase 2 chloroplastic isoform X1 from Musa acuminata subsp. Malaccensis. We then cloned the BrPT2 into pRI vector and expressed in B. rotunda cell suspension cultures via Agrobacterium-mediated transformation. The BrPT2-expressing cells were fed with substrate, pinostrobin chalcone, and their products were analyzed by liquid chromatography mass spectrometry. We found that the amount of flavonoids, namely alpinetin, pinostrobin, naringenin and pinocembrin, in BrPT2-expressing cells was higher than those obtained from the wild type cells. However, we were unable to detect any targeted prenylated flavonoids. Further in-vitro assay revealed that the reaction containing the BrPT2 protein produced the highest accumulation of pinostrobin from the substrate pinostrobin chalcone compared to the reaction without BrPT2 protein, suggesting that BrPT2 was able to accelerate the enzymatic reaction. The finding of this study implied that the isolated BrPT2 may not be involved in the prenylation of pinostrobin chalcone but resulted in high yield and production of other flavonoids, which is likely related to enzyme promiscuous activities.
  2. Liew YJM, Lee YK, Khalid N, Rahman NA, Tan BC
    Mol Biotechnol, 2021 Apr;63(4):316-326.
    PMID: 33565047 DOI: 10.1007/s12033-021-00304-z
    Prenylation of aromatic natural products by membrane-bound prenyltransferases (PTs) is an important biosynthesis step of many bioactive compounds. At present, only a few plant flavonoid-related PT genes have been functionally characterized, mainly due to the difficulties of expressing these membrane proteins. Rapid and effective methods to produce functional plant membrane proteins are thus indispensable. Here, we evaluated expression systems through cell-based and cell-free approaches to express Boesenbergia rotunda BrPT2 encoding a membrane-bound prenyltransferase. We attempted to express BrPT2 in Escherichia coli and tobacco plants but failed to detect this protein using the Western-blot technique, whereas an intact single band of 43 kDa was detected when BrPT2 was expressed using a cell-free protein synthesis system (PURE). Under in vitro enzymatic condition, the synthesized BrPT2 successfully catalyzed pinostrobin chalcone to pinostrobin. Molecular docking analysis showed that pinostrobin chalcone interacts with BrPT2 at two cavities: (1) the main binding site at the central cavity and (2) the allosteric binding site located away from the central cavity. Our findings suggest that cell-free protein synthesis could be an alternative for rapid production of valuable difficult-to-express membrane proteins.
  3. Liew YJM, Chua KO, Yong HS, Song SL, Chan KG
    Rev Bras Bot, 2022;45(4):1209-1222.
    PMID: 36320930 DOI: 10.1007/s40415-022-00845-w
    Boesenbergia rotunda (L.) Mansf. is a medically important ginger species of the family Zingiberaceae but its genomic information on molecular phylogeny and identification is scarce. In this work, the chloroplast genome of B. rotunda was sequenced, characterized and compared to the other Zingiberaceae species to provide chloroplast genetic resources and to determine its phylogenetic position in the family. The chloroplast genome of B. rotunda was 163,817 bp in length and consisted of a large single-copy (LSC) region of 88,302 bp, a small single-copy (SSC) region of 16,023 bp and a pair of inverted repeats (IRA and IRB) of 29,746 bp each. The chloroplast genome contained 113 unique genes, including 79 protein-coding genes, 30 transfer RNA (tRNA) genes and four ribosomal RNA (rRNA) genes. Several genes had atypical start codons, while most amino acids exhibited biased usage of synonymous codons. Comparative analyses with various chloroplast genomes of Zingiberaceae taxa revealed several highly variable regions (psbK-psbI, trnT-GGU-psbD, rbcL-accD, ndhF-rpl32, and ycf1) in the LSC and SSC regions in the chloroplast genome of B. rotunda that could be utilized as molecular markers for DNA barcoding and species delimitation. Phylogenetic analyses based on shared protein-coding genes revealed that B. rotunda formed a distinct lineage with B. kingii Mood & L.M.Prince, in a subclade that also contained the genera Kaempferia and Zingiber. These findings constitute the first chloroplast genome information of B. rotunda that could be a reference for phylogenetic analysis and identification of genus Boesenbergia within the Zingiberaceae family.

    SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s40415-022-00845-w.

Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links